Inline Snort multiprocessing with PF_RING

Author(s): Livio Ricciulli, Timothy Covel

Published: September, 2011

Introduction

We have modified PF_RING to work with inline Snort while still supporting the current passive
multiprocessing functionality. PF_RING load balances the traffic to analyze by hashing the IP headers in
multiple buckets. This allows it to spawn multiple instances of Snort, each processing a single bucket,
and achieve higher throughput through multiprocessing. In order to take full advantage of this, you need
a multicore processor (like an 17 with 8 processing threads). This should also work well with dual or quad
processor boards to increase parallelism even further.

What this means is that you can build a really cheap IPS using standard, off-the-shelf hardware.

If you have any questions or issues, please contact us at support@metaflows.com

Equipment Used

Intel(R) Core(TM) i7 CPU 950 @ 3.07GHz, Dual Intel e1000e, 4 Gig RAM
PF_RING e1000e driver, transparent_mode=1

Operating System: Linux (CentOS preferred)

Snort 2.9.0.x using the 6765 Emerging Threats Pro Rules

% Packet Processed /Forwarded with Intel 17 3 Ghz (6765 ET pro rules)

| 4-8 cores == 500-700 Mbit/s

== AF_PACKET
% Packets

Forwarded =#=1 Core pfrgin inline

w=fll=7 Cores pfring inline
==dr=4 Cores pfring inline
i cores pfring inline

N\ N

Current 1-Core Snort Inline
<= 100 Mbit/s

==& cores pfring inline

a 00 400 600 800 1000
sustained Traffic (Mbit/s)

ET-Pro Percentage Packet Forwarded

Bandwidth 1 Core 2 Cores 4 Cores 6 Cores 8 Cores

100 100% 100% 100% 100% 100%

200 67.00% 100% 100% 100% 100%
400 35.00% 64.00% 96.5% 100% 100%
600 26.00% 48.00% 89.00% 96.6% 98.9%
917 17.00% 36.00% 73.00% 82.00% 91.00%

As the graph above illustrates, inline with 1 core can only sustain 100 Mbit/s or less (that’s what people
get today). With Pfring inline we parallelize the inline processing on up to 8 cores thus achieving almost

700 Mbit/s sustained with ET-Pro rules with approximately 200 microseconds latency.

Snort 2.9.0.x using the 5267 VRT Rules

% Packet Processed/Forwarded with Intel 17 3 Ghz (5267 VRT rules)
00.00% =
s 4-8 cores => 100-550 Mbit/s

90.00%

80.00%

70.00%
—@—AF PACKET

)
% Pacl(etsuL - —=1 Core pfring inline
Fokudodﬁo ik @ 2 Cores plring inline
wtr— & Cores pfring inline
40.00% =G cores pfring inline

w8 COre&s plring inline
30.00%

‘ Current 1-Core

<= 50 Mbit/s

0 200 400 600 800 1000
Sustained Traffic (Mbit/s)

This graph again illustrates that using Pfring inline to parallelize the inline processing increases

performance with the VRT rules as well.

VRT Percentage Packet Forwarded

Bandwidth 1 Core 2 Cores 4 Cores 6 Cores 8 Cores
50 98.30% 100% 100% 100% 100%
100 85.00% 98.30% 100% 100% 100%
200 60.00% 88.00% 96.2% 100% 100%
500 39.00% 62.00% 77.00% 88.00% 96.10%
700 30.00% 53.00% 66.00% 79.00% 91.70%
917 19.00% 43.00% 60.00% 74.00% 89.00%

Please note: performance numbers are greatly affected by the type and number of Snort rules used and

the type of traffic being sent through.

Installation Instructions

Install the following packages
libdnet-1.12
kernel-devel
libtool
subversion
automake
make
autoconf
pcre-devel
libpcap-devel
flex

bison

byacc

gcc

zlib-devel
gce-c++

#Build the PF_RING inline libraries and kernel module:

#download our modified PF_RING source http://www.metaflows.com/pfring/PF_RING.tgz

tar xvfz PF_RING.tgz

cd PF_RING; make clean

cd kernel;

make clean; make; make install
cd ../userland/lib;

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/ lib;
export LIBS="-L/usr/local/lib";

Jconfigure;

make clean; make; make install

cd ../libpcap;

export LIBS="-L/usr/local/lib -Ipfring -Ipthread’;

Jconfigure;

make clean; make; make install;
make clean; make; make install-shared
In -s /usr/local/lib/libpfring.so /usr/lib/libpfrin g.so

#Build the dag-0.6.2 libraries:
#downlaod dag-0.6.2 http://www.snort.org/dl/snort-current/daqg-0.5.tar.gz

tar xvfz dag-0.6.2.tgz

cd dag-0.6.2;

chmod 755 configure;

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/ lib;
export LIBS="-L/ustr/local/lib -lpcap -Ipthread"

Jconfigure --disable-nfg-module --disable-ipg-modu le\

--with-libpcap-includes=/usr/local/include \
--with-libpcap-libraries=/usr/local/lib \

--with-libpfring-includes=/usr/local/include/ \
--with-libpfring-libraries=/usr/local/lib
make clean; make; make install

#Go back to the PF_RING directory and build the daq interface module

cd PF_RING/userland/snort/pfring-dag-module;

autoreconf -ivf;

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/ lib
export LIBS="-L/usr/local/lib -Ipcap -Ipfring -Ipth read’;
Jconfigure; make; make install

Build Snort 2.9.x
cd snort-2.9.x;

make clean ;

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/ lib;
export LIBS="-L/usr/local/lib -Ipfring -Ipthread'

.configure --with-libpcap-includes=/ustr/local/incl udes \

--with-libpcap-libraries=/usr/local/lib \
--with-libpfring-includes=/usr/local/include/ \
--with-libpfring-libraries=/usr/local/lib \
--enable-zlib --enable-perfprofiling

make

make install

Load PF_RING MODULE

Hi#HHHE ATTENTION #HHH#H###H

#The OS will try to load the PF_RING kernel module with default
#parameters anytime any application with PF_RING runs

#The default parameters are wrong when running inline

#****Never run inline with tx_capture****

#Therefore is always a good idea to remove pf_ring.ko and reload it with
#the correct parameter before running inline

rmmod pf_ring.ko
insmod pf_ring.ko enable_tx_capture=0

Run Snort

Run as many instances as your system can handle limited only to value of \
#CLUSTER_LEN in PF_RING/kernel/linux/pf_ring.h at compile time (and your memory)
#Remember to replace the interfaces with ones appropriate for your instance.

ifconfig ethO up

ifconfig ethl up

snort -c snort.serv.conf -A console -y -i ethO:eth1 \

--dag-dir /usr/local/lib/daq --daq pfring --dag-var clusterid=10\
--dag-mode inline -Q

#If you want even faster performance (about 20% more) and you have one of the Ethernet interfaces in
#PF_RING/drivers, you can run in transparent mode 1. We have only extensively tested the e1000e
#driver and we know it is very reliable.

#To use transparent mode 1 with an e1000e interface:

cd PF_RING/drivers/intel/e1000e/e1000e-1.3.10a/src;
make clean;

make;

make install

#Now you need to replace the e1000e module by either

#rebooting or removing the old one and reloading the new driver in
#/lib/modules/ uname -r'/kernel/drivers/net/e1000e/

#You also need to reload the pf_ring.ko module to enable transparent mode 1
#also increasing the buffer size to handle spikes in throughput

rmmod pf_ring.ko
insmod pf_ring.ko enable_tx_capture=0 transparent._m ode=1
min_num_slots=16384

#If you have any issues, you can contact us at support@metaflows.com or visit the Metaflows Google
#group for support http://groups.google.com/group/metaflows

