

 Sourcefire, Inc. All rights reserved. October 27, 2006 1

Target-Based TCP Timestamp Stream
Reassembly

Authors
Judy Novak

Steve Sturges

Revision 2.0
July 30, 2007

Prepared by:
Sourcefire, Incorporated

9770 Patuxent Woods Drive
Columbia, MD 21046

 Sourcefire, Inc. All rights reserved. October 27, 2006 2

Abstract

This paper explores the use of the TCP timestamp option and associated timestamp values to
comprehend how different operating systems react to manipulated timestamp values. This is
valuable knowledge for an intrusion detection system (IDS) or intrusion prevention system (IPS)
to possess and implement to avoid evasions that employ TCP timestamp value mutations.

Introduction to Timestamps

The TCP timestamp option is used by many current operating systems. There are two timestamp
values associated with the TCP timestamp options field – the sender’s timestamp followed by the
receiver’s echoed timestamp. Each timestamp value represents the respective computer’s “up
time”, the number of units that have passed since the last reboot. According to RFC 1323 “TCP
Extensions for High Performance” 1, the unit selected to mark the passing of time is as follows -
“we choose a timestamp clock frequency in the range 1 millisecond to 1 second per tick”.

TCP timestamps are used to measure the round trip time (RTT) of a given TCP segment. As
well, TCP timestamps provide an indication of when to discard delayed segments – a process
known as Protection Against Wrapped Sequence Numbers (PAWS). There is a finite range of
32-bit TCP sequence numbers available to mark the chronology of TCP segments, so it is
possible for sequence numbers to wrap from the largest possible back to zero in a particular TCP
session. Theoretically, it is possible, though not likely, for a sending host or network to delay a
segment, for that same host to send additional segments containing TCP sequence numbers that
wrap, and for the delayed segment to arrive coincidentally during a current exchange where the
delayed TCP sequence number is in the current window and conflicts with the valid segment
containing a TCP sequence number in the current window. The receiving host discards the
delayed segment because the timestamp is older than the one the receiving host most recently
acknowledged. RFC 1323 summarizes the timestamp as “From the receiver's viewpoint, the
timestamp is acting as a logical extension of the high-order bits of the sequence number.”

 Sourcefire, Inc. All rights reserved. October 27, 2006 3

Figure 1. Illustration of Protection Against Wrapped Sequence numbers

In Figure 1, the sending host first sends a series of segments with chronologically increasing TCP
sequence values of “B” through “F”. We purposely use letters to denote the sequence values to
focus on the chronology and not specific numbers, per se. Assume that the range of TCP
sequence values available for use is “A” through “F”, analogous to real TCP sequence numbers 0
through 232 – 1. TCP timestamps also increase on each of the segments that the host sends.

Suppose that the segment with TCP sequence “C” and a TCP timestamp of 20 gets delayed and
the receiving host does not acknowledge it. Eventually, the sending host resends TCP sequence
“C” segment, but with a timestamp of 25 that reflects the later timestamp clock. The receiving
host acknowledges all the segments that arrive including the one with sequence “C” and a
timestamp value of 25. Since sequence “F” is the final sequence value in our range of possible
values, the sequence value wraps back to “A” and the sending host then transmits segments with
sequence values of “A”, “B”, and “C”. The receiving host acknowledges segments with sequence
“A” and sequence “B”. Even though the host received a sequence “B” before; it already
acknowledged it and the current sequence “B” once again becomes the next expected sequence
value.

Now comes the trickery. Coincidentally, the delayed original sequence “C” segment with
timestamp 20 arrives concurrently with current sequence “C” with timestamp 80. The receiving
host most recently acknowledged sequence “B” with a timestamp of 70. That means that the
delayed sequence “C” segment has an old timestamp of 20 compared to 70. The receiving host
discards it and acknowledges sequence “C” segment with a timestamp of 80. As you probably

 Sourcefire, Inc. All rights reserved. October 27, 2006 4

surmised, such an occurrence is a rare coincidence, but the authors of RFC 1323 included the
Protection Against Wrapped Sequence numbers nevertheless.

The segments in our contrived “A” through “F” range of sequence values appear to wrap
immediately. Segments with sequence values of “B” and “C” are once again in the current
window almost as soon as they are recycled from the first iteration of segments with identical
sequence values. In reality, the recycling is not immediate, but instead a host sends millions of
segments before it reuses duplicate TCP sequence numbers in the same session.

 Sourcefire, Inc. All rights reserved. October 27, 2006 5

Timestamps and Intrusion Detection

Ordinarily, TCP timestamps have little or no effect on accurately detecting intrusions since a host,
hence IDS/IPS that receives a segment with an old timestamp should discard it in favor of one
with a current timestamp. It stands to reason that if an attacker attempts some kind of evasion by
sending wholly overlapping segments, one with a valid timestamp containing a payload of an
attack, and the other with an old timestamp, but no attack payload; the IDS/IPS should discard the
segment with the old timestamp and honor and examine the one with the current timestamp thus
mimicking the destination host behavior.

Yet, extensive examination of the use of crafted eccentric TCP timestamps combined with the
ambiguity of RFC 1323 expose unique behavior by different operating systems. We have
observed this target-based behavior after we send overlapping TCP segments when
unacknowledged segments exist. In other words, when we place unexpected or old timestamps in
overlapping segments that arrive before some delayed segment, different operating systems
manifest unique responses. Unless an IDS/IPS is aware of and understands the target’s behavior,
it is susceptible to evasions by use of overlapping TCP segments with different or abnormal TCP
timestamps.

One philosophy regarding accurate handling of old timestamps and an appropriate IDS/IPS
reaction that conforms to the destination host’s behavior is that it is even more important for an
intrusion prevention system than an intrusion detection system to understand the implications of
TCP timestamps. While it is acceptable for an intrusion detection system to alert about an exploit
after-the-fact, the intrusion prevention system must block the entry of malicious packets.
Realistically, what this means is that an intrusion detection system can determine how a
destination host processed one or more segments by examining the TCP acknowledgement
numbers that the receiving host returns. Of course, this becomes more involved when
overlapping segments are sent, requiring the intrusion detection system to be familiar with target-
based TCP stream reassembly. An acknowledgement from the receiving host in this case does
not necessarily disambiguate which of the overlapping segments the receiving host favors. In
contrast, an intrusion prevention system does not get the opportunity to examine feedback from
the destination host; it must have a priori knowledge and react appropriately.

An IPS that incorrectly processes TCP segments with unusual timestamps may be duped into
generating a false positive and unnecessarily blocking a segment that the destination host would
ultimately drop. Worse yet, it may permit a malicious segment that the IPS should block to reach
the destination host and possibly cause some harm. A second philosophy about intrusion
preventions systems is that scrutiny before a packet enters the network affords the IPS the
opportunity to perform packet scrubbing for abnormal or unusual characteristics. In the case of
expired timestamps, an intrusion prevention system could choose to drop the packet or scrub it to
have no timestamp, examine the payload, and permit entry if it finds no malicious payload.

 Sourcefire, Inc. All rights reserved. October 27, 2006 6

The Reality of TCP Timestamps

According to RFC 1323 “It is important to note that the timestamp is checked only when a
segment first arrives at the receiver, regardless of whether it is in-sequence or it must be queued
for later delivery.” If there is a delayed segment, once it arrives, “the timestamps of the queued
segments are *not* inspected again at this time, since they have already been accepted.” Given
this guidance, our expectation is that TCP will inspect segments with TCP timestamps as they
arrive. TCP does not wait to compare the just-arrived segment’s timestamp with the delayed
segment’s timestamp. Instead, it compares the just-arrived segment’s timestamp with those of
segments that have already arrived.

The reality of how hosts react to old timestamps is much more convoluted than a simple one-size-
fits-all solution. This is especially so when we fabricate the TCP segments that we send to
contain unusual timestamp values, or contain no timestamp, or delay the arrival of the first
segment that usually follows the three-way handshake. Because there are so many exceptions
and tangled logic forks found in timestamp processing, we attempt to make the explanation of
timestamp processing more coherent by employing the dreaded flow-chart to depict some of the
phases and issues involved.

���������	
����

���������
����
����

��
��	�

�����������������

����
����
����

������
�

��	������ ��������
!����
����
����������

"��������	
�

����
����
����

����#��$

����
����
��������$

���

�

���

�

�

������

�

Figure 2. TCP timestamp processing on the three-way handshake

 Sourcefire, Inc. All rights reserved. October 27, 2006 7

First, let’s examine what transpires on the three-way handshake shown in Figure 2. Both client
and server must support the TCP timestamp option for either to employ it. Each signals its intent
to use the TCP timestamp by including it in the TCP options field when it sends the segment
where the SYN flag is set. A client that uses a timestamp on the three-way handshake typically
sets its timestamp value to the current timestamp clock value and sets the receiver’s timestamp to
zero. However, some operating systems, such as Windows set both the sender’s and receiver’s
timestamps to zero and wait until after the completion of the three-way handshake to begin to
record their own timestamp and echo the receiver’s timestamp. Servers that run different
operating systems uniquely respond to a client initiation where the TCP timestamp values are
zero.

Before we examine how a server handles a client SYN segment with zero timestamps, you must
have a general understanding of how a server behaves after receiving a client SYN segment that
contains TCP options. Servers reflect client TCP options. Not all operating systems support all
available or offered TCP options. If a server receives a session initiation segment from a client
that contains fewer TCP options than the server supports, the server reflects only the TCP options
that the client sent. Conversely, if a server receives a session initiation segment from a client that
contains more TCP options than the server supports, the server reflects only the TCP options that
it supports. When some operating systems such as Linux 2.4 and later kernels receive a Windows
client SYN segment with zero timestamp values, they omit the TCP timestamp option in the TCP
options reflected back to the client. Even though the client offers, and the server supports the
timestamp option, a value of zero in the client’s timestamp causes the server to reject the use of
the TCP timestamp option altogether.

Figure 3. Processing after receiving three-way handshake with a non-zero TCP timestamp value

Next, let’s look at the logic when the three-way handshake timestamp value is non-zero as
displayed in Figure 3. This is the simpler logic path than a zero timestamp value since receiving
hosts use this non-zero timestamp value as the “baseline” to compare subsequent segment
timestamps. The client segment with the TCP sequence number following the three-way
handshake, labeled “Segment 1”, has special significance in TCP timestamp processing,
especially in the next case where we examine the TCP timestamp from the three-way handshake
has a value of zero. To clarify, a non-zero timestamp value on segment 1 means that there must
be a TCP timestamp in the segment and it must be greater than zero. Segment 1 becomes the
baseline when it has a non-zero timestamp value and arrives directly after the three-way
handshake. Otherwise, the timestamp from the three-way handshake remains the baseline.

 Sourcefire, Inc. All rights reserved. October 27, 2006 8

 Figure 4. Processing after receiving three-way handshake with a zero TCP timestamp value

Figure 4 shows the processing flow when the three-way handshake TCP timestamp value is zero.
In general, it appears that a receiving host uses segment 1 as a baseline for TCP timestamp values
when the three-way handshake timestamps are zero. This is true if the timestamp value on
segment 1 is non-zero and it arrives in order. One notable exception is Windows 2003 which
appears to ignore timestamps completely even when segment 1 arrives in order and has a non-
zero value.

For the operating systems in our tests, if segment 1 has no timestamp or a timestamp value of
zero, then the receiving host ignores all subsequent timestamps for the duration of the TCP
session. Even if segment 2 arrives with a valid timestamp, the operating system does not consider
segment 2 the baseline timestamp. Another anomalous situation is depicted in Figure 4 where
segment 1 is delayed. If this is the case, the timestamps of segments that arrive before it are
irrelevant – the receiving host treats them as if they have no timestamps at all. All segments with
an old timestamp value that arrive before this special segment 1 are not discarded. Let’s assume
that we have segments 1, 2, and 3 chronologically in TCP sequence number order. Now, let’s say
segment 2 has a valid timestamp but it arrives immediately after the three-way handshake,
segment 3 follows with a timestamp value of zero, and finally delayed segment 1 arrives with a
valid timestamp. The receiver accepts segment 3 even though it has an old timestamp relative to
segment 2. Tested TCP stacks do not appear to have a baseline timestamp value until segment 1
arrives. Once segment 1 arrives, the receiving host compares timestamp values of segments that
follow to segment 1’s timestamp value. While RFC 1323 does not explicitly state this, the
different operating system TCP stacks that we tested conform to this convention.

 Sourcefire, Inc. All rights reserved. October 27, 2006 9

%�����	��

����
����

������&��	���'�

�	���$���

�����
���������

�(���$��	�������

)�����	��

����
�����������

���

�����
����*+����
�

��,	�-��$(�$�

����
����

.	����$�
����
���/�

$�����

��,	�-��$(�

0�#1����
�

2�,	�-��$(�����

����$���(��	

� ���

�

���

���

�

�

���

�������(��	
�

������

�
����
����

�����������
�

�

.(��������

����
�����

�������$�"����	�-�

�	

���

���

�

2�,	�-��$(�����

����$���(��	

Figure 5. General processing of timestamps after baseline timestamp established

Now, let’s examine what happens once a baseline timestamp has been established. A segment
arrives and the receiving host compares its TCP sequence number to the most recently
acknowledged one. If the receiving host is HPUX and the TCP sequence number is not the next
expected one, it acknowledges the segment regardless of the TCP timestamp value. Stated
differently, an HPUX host does not discard a segment with an old timestamp value if the segment
arrives out of order even if there is a legitimate baseline timestamp value for comparison. All
other operating systems continue timestamp processing whether or not the TCP sequence number
is the next expected one.

If an aberrant segment with no timestamp arrives in the middle of a TCP exchange where the use
of timestamps has been negotiated, most operating systems simply acknowledge the segment if it
has the next expected sequence number. However, Solaris hosts respond in a unique fashion and
ignore all timestamps in subsequent segments. It’s as if the lack of a TCP timestamp in any

 Sourcefire, Inc. All rights reserved. October 27, 2006 10

segment sent to a Solaris signals it to turn off timestamp tracking for the remainder of the TCP
session.

Finally, if the timestamp is greater than the most recently acknowledged one, the receiving host
acknowledges it. If the timestamp is older than the most recently acknowledged one, the
receiving host discards the segment.

 Sourcefire, Inc. All rights reserved. October 27, 2006 11

Sample Timestamp Responses

Before we proceed, let’s illustrate some specific examples of timestamp processing. In this first
example, the client establishes the three-way handshake with the timestamp option and the server
supports the timestamp option too. Both segments of the client SYN and the ACK of the three-
way handshake have a timestamp of 10. All subsequent segments must have a timestamp greater
than 10 to be valid. Segment 1 which is next in terms of TCP sequence number is delayed, and
segment 2 arrives with a timestamp of 20. According to RFC 1323, the receiving host should
examine the timestamp and queue segment 2 pending the arrival of segment 1. Segment 1 arrives
with an old timestamp of 5 which is less than the timestamp found on segments from the three-
way handshake. The server never acknowledges segments 1 or 2 because of this; this indicates
that it queued segment 2, then received segment 1 that contains the old timestamp and discarded
it and any segments that followed it with greater TCP sequence number values.

In the next example, we examine the server’s behavior where we manipulate the client’s three-
way handshake values to be zero and delay segment 2.

The client has timestamp values of zero on the three-way handshake, followed by a segment 1
with a timestamp of 10. Next, segments 3A and 3B wholly overlap each other (they start and end
with the same TCP sequence number), but have a different payload and segment 3A has an old
timestamp. Finally, delayed segment 2 arrives with a timestamp that is valid for its chronological
TCP sequence number. Segment 1 becomes the baseline timestamp and the receiver compares
timestamp values found in segments 3A and 3B to it pending the arrival of segment 2.

This example is more complex because it introduces another concern, overlapping segments.
This could be a target-based issue since some operating systems favor the original segment sent
while others favor the subsequent one. However, it becomes a target-based concern only if both
overlapping segments 3A and 3B have valid timestamps since timestamp processing precedes
overlap processing. In this instance where segment 3A has an old timestamp, the receiving host
discards it and acknowledges segment 3B. Consequently, you no longer have overlapping
segments since the host accepts only 3B as valid.

��������	
��� � ����

��������	
������� �����

�������������� � ����

������������������ ��

�������������������� ��

�������������������� ��

�������������������� ���

�

��������	
���� � �����

��������	
�������� �����

�������������� � �����

����������������������� �����

����������������������� ������

 Sourcefire, Inc. All rights reserved. October 27, 2006 12

These two examples give you an inkling of some of the issues involved in understanding how
hosts perform timestamp processing. We developed a comprehensive set of tests to explore the
behavior of receiving hosts and timestamp issues. Yet, the behavior that we expect does not
always occur. Under certain conditions, some operating systems appear to suspend examination
or ignore the use of timestamps altogether from segments that arrive before a delayed segment.

 Sourcefire, Inc. All rights reserved. October 27, 2006 13

TCP Timestamp Tests

RFC 1323 does not elaborate how a host should respond when it receives zero timestamp values
on the three-way handshake, or when it receives segments with no TCP timestamp option and
associated values even though both hosts have negotiated the use of timestamps. We created a
myriad of test cases using these considerations along with using old timestamps. For all test
cases, the client connects to the server and we manipulate the TCP timestamp values on client
segments to observe how the server responds. Since segment 1 seems to have some magical, yet
undocumented, value in terms of timestamps, we include tests that alter timestamp values in it.

The whole point of each test is to determine how a server responds to a different combination of
TCP timestamp values when it receives overlapping segments. Therefore, the server application
we use needs to return a different response depending on whether it honors the original or
overlapping segment. A web server meets this prerequisite of responding with a returned web
page when a segment contains a valid URL. The web server responds with an error message
when a segment contains an invalid URL. A web server responds with a web page when it
receives a valid URL and HTTP version. But, a web server (except IIS) responds with an error
page when it receives the same URL, but an invalid HTTP version. Each timestamp test has the
following basic flow:

After we perform many tests with this flow, we conduct a final series of tests that swaps the
arrival order of segments 1 and 2 where segment 2 arrives before segments 3A and 3B and
segment 1 arrives last.

The existence of, and values associated with TCP timestamps for the above flow varies for each
test. Also, overlap configurations for segments 3A and 3B change. In this particular example,
segments 3A and 3B start and end with the same TCP sequence number so that segment 3B
wholly overlaps segment 3A. If a web server favors segment 3A, it returns an error message. If
it favors segment 3B, it returns the requested web page. We’ll discuss changes to overlap
positioning in more detail in the following section, but let’s concentrate on timestamp
manipulation for now.

��������	
������������������ ��!�������� "���#�

��������	
���������������������� ��

���������������������������� ��"���������	
�����

���������������������� �$�"�%�"&�'()�*��

����������������������� �$�"�%�"&��'���%�+,�����-����.,/�/�/�/�*�

����������������������� �$�"�%�"&��'���%�+,�����-�����,/�/�/�/�*�

0���$�%���������������� �$�"�%�"&�'�'�

�

 Sourcefire, Inc. All rights reserved. October 27, 2006 14

The following tests examine many different aspects and combinations of timestamp values:

Round 1, Case 1: Client timestamp values on the three-way handshake are zero; segment 1
arrives first and has a timestamp value of 11111. Segments 3A and 3B contain various timestamp
values and options – no timestamp options, old timestamp or valid timestamps. Delayed segment
2 arrives last with a valid timestamp value of 12345. We expect the receiving host to examine
segments 3A and 3B relative to segment 1’s timestamp.

3whs Segment 1 Segment 3A Segment 3B Segment 2

Test 1 ts = 0 ts = 11111 ts = 22222 ts = 33333 ts = 12345
Test 2 ts = 0 ts = 11111 no timestamp ts = 33333 ts = 12345
Test 3 ts = 0 ts = 11111 ts = 22222 no timestamp ts = 12345
Test 4 ts = 0 ts = 11111 ts = 22222 ts = 22222 ts = 12345
Test 5 ts = 0 ts = 11111 no timestamp no timestamp ts = 12345
Test 6 ts = 0 ts = 11111 ts = 33333 ts = 22222 ts = 12345
Test 7 ts = 0 ts = 11111 ts = 0 ts = 0 ts = 12345
Test 8 ts = 0 ts = 11111 ts = 22222 ts = 3 ts = 12345
Test 9 ts = 0 ts = 11111 ts = 3 ts = 22222 ts = 12345

Round 1, Case 2: Client timestamp values on the three-way handshake are non-zero; segment 1
arrives first and has a timestamp of 11111. Segments 3A and 3B contain various timestamp
values and options – no timestamp options, old timestamp or valid timestamps. Delayed segment
2 arrives last with a valid timestamp value of 12345. We expect the receiving host to examine
segments 3A and 3B relative to the client’s segment 1 timestamp.

3whs Segment 1 Segment 3A Segment 3B Segment 2

Test 1 ts = 10000 ts = 11111 ts = 22222 ts = 33333 ts = 12345
Test 2 ts = 10000 ts = 11111 no timestamp ts = 33333 ts = 12345
Test 3 ts = 10000 ts = 11111 ts = 22222 no timestamp ts = 12345
Test 4 ts = 10000 ts = 11111 ts = 22222 ts = 22222 ts = 12345
Test 5 ts = 10000 ts = 11111 no timestamp no timestamp ts = 12345
Test 6 ts = 10000 ts = 11111 ts = 33333 ts = 22222 ts = 12345
Test 7 ts = 10000 ts = 11111 ts = 0 ts = 0 ts = 12345
Test 8 ts = 10000 ts = 11111 ts = 22222 ts = 3 ts = 12345
Test 9 ts = 10000 ts = 11111 ts = 3 ts = 22222 ts = 12345

 Sourcefire, Inc. All rights reserved. October 27, 2006 15

Round 2, Case 1: Client timestamp values on the three-way handshake are zero; segment 1
arrives first, but has no timestamp. Test cases for segments 3A and 3B remain the same as Round
1. Delayed segment 2 arrives last with a valid timestamp value of 12345. But, there is no
“baseline” timestamp to compare segments 3A and 3B timestamps. We expect the receiving host
to ignore timestamps completely for the entire session.

3whs Segment 1 Segment 3A Segment 3B Segment 2

Test 1 ts = 0 no timestamp ts = 22222 ts = 33333 ts = 12345
Test 2 ts = 0 no timestamp no timestamp ts = 33333 ts = 12345
Test 3 ts = 0 no timestamp ts = 22222 no timestamp ts = 12345
Test 4 ts = 0 no timestamp ts = 22222 ts = 22222 ts = 12345
Test 5 ts = 0 no timestamp no timestamp no timestamp ts = 12345
Test 6 ts = 0 no timestamp ts = 33333 ts = 22222 ts = 12345
Test 7 ts = 0 no timestamp ts = 0 ts = 0 ts = 12345
Test 8 ts = 0 no timestamp ts = 22222 ts = 3 ts = 12345
Test 9 ts = 0 no timestamp ts = 3 ts = 22222 ts = 12345

Round 2, Case 2: Client timestamp values on the three-way handshake are non-zero; segment 1
arrives first, but has no timestamp. Again, we perform the same timestamp tests for segments 3A
and 3B. Delayed segment 2 arrives last with a valid timestamp of 12345. But this time there is a
“baseline” timestamp found in the segments of the three-way handshake. We expect timestamps
found in segments 3A and 3B to be compared to those.

3whs Segment 1 Segment 3A Segment 3B Segment 2

Test 1 ts = 10000 no timestamp ts = 22222 ts = 33333 ts = 12345
Test 2 ts = 10000 no timestamp no timestamp ts = 33333 ts = 12345
Test 3 ts = 10000 no timestamp ts = 22222 no timestamp ts = 12345
Test 4 ts = 10000 no timestamp ts = 22222 ts = 22222 ts = 12345
Test 5 ts = 10000 no timestamp no timestamp no timestamp ts = 12345
Test 6 ts = 10000 no timestamp ts = 33333 ts = 22222 ts = 12345
Test 7 ts = 10000 no timestamp ts = 0 ts = 0 ts = 12345
Test 8 ts = 10000 no timestamp ts = 22222 ts = 3 ts = 12345
Test 9 ts = 10000 no timestamp ts = 3 ts = 22222 ts = 12345

We repeat the above series of four sets of tests, but switch the arrival order of segments 1 and 2.
The new tests are known as “Round 3, Case 1 and 2” and “Round 4, Case 1 and 2”. We
performed this new series of tests to try to understand the role of segment 1 as the baseline
timestamp tests. Segment 2 has a valid timestamp of 12345 and it arrives before segments 1, 3A,
and 3B. Yet, results reveal that the receiving host does not use segment 2 as a baseline timestamp
for later segments 3A and 3B. Segment 1 must arrive first when the three-way handshake values
are zero in order for old timestamps in segments 3A and 3B to be discarded.

We should note that while it appears that our concentration in this series of tests is the behavior of
the host that receives TCP segments with data and unusual timestamps, the effects of properly
evaluating timestamps are more widespread. The salient point is that a host should reject any
segment that has an old timestamp whether or not it contains data. For instance, an
acknowledgment with an old timestamp should not be accepted. If this is not treated properly by

 Sourcefire, Inc. All rights reserved. October 27, 2006 16

an IDS/IPS, the IDS/IPS may not correctly analyze the actual data exchanged and acknowledged
for the remainder of the stream. This includes knowing when the session is actually closed. If an
IDS/IPS is fooled into believing a session is closed, it is easy to perform an evasion.

 Sourcefire, Inc. All rights reserved. October 27, 2006 17

The Sturges/Novak Overlapping TCP Segment Model

Authors Steve Sturges and Judy Novak have presented their research of the issue of overlapping
TCP segments in their paper “Target-based TCP Stream Reassembly”. In that paper, we
examined operating system behavior using a paradigm of different segment overlaps. We felt
that we must examine not only wholly overlapping segments as we referenced in our timestamp
tests as segments 3A and 3B, but all the overlap conditions found in the below segment overlap
model.

Figure 6. The Sturges/Novak TCP segment overlap model

We had trepidations about exploring the vast number and sheer complexity of the overlap
paradigm in conjunction with the TCP timestamp tests developed. We did not want to attempt to
develop and test different timestamp combinations in the above segment overlap model. Instead,
we conducted all of our TCP timestamp tests using each individual set of the nine segment
overlaps listed in the Figure 6 table under the column “Original vs. Subsequent Segment”. Now,
segments 3A and 3B of our timestamp tests are not necessarily wholly overlapping. Segment 3A
may become the incarnation of the above model original segment “3.1” and segment 3B may
become the incarnation of the above model subsequent segment “6” where 3A begins after and
ends before segment 3B.

Our paper “Target-based TCP Stream Reassembly” explains the model concept in great detail.
Briefly, model segment “3.1” or “6” simply refers to the label of an entire segment that is one or
more bytes. It has nothing to do with the sequence numbers or payloads of those bytes. For

 Sourcefire, Inc. All rights reserved. October 27, 2006 18

instance, model segment “3.1” refers to the single byte in the first row of the model labeled
original segments. Segment “6” refers to the set of three bytes in the second row of the model
labeled subsequent segments. Segments “3.1” and “6” overlap – subsequent segment “6” begins
before (relative TCP sequence number less than segment “3.1”) and ends after (relative TCP
sequence number greater than “3.1) original segment “3.1”.

As an example of one test, we took overlapping segments 3.3 and 8 from the above overlap
model and ran them through all of the 8 sets (Round 1, Case 1 through Round 4, Case 2) of the
nine individual timestamp tests.

Before reviewing some of the results, it is helpful to understand that there are three different
kinds of segment overlap conditions that affect timestamp processing. First, there are overlaps
where the receiving host must consider both valid to form a complete HTTP request.
Specifically, overlaps 1-4 (original segment 1 and subsequent segment 4) and 2-4 (original
segment 2 and subsequent segment 4) have one segment that begins before the other, and that
same segment ends before the other. If either of these segments is invalid, a gap in sequence
numbers and content remains. Next, there are overlaps such as 3.3-8, 3.4-9, 3.5-10, 3.6-11, 3.1-6,
and 3.2-7 where one overlap wholly consumes the other by either starting before or at the same
sequence number as the other and ending after or at the same sequence number as the other. In
this situation, the wholly consuming segment can form the complete content itself. But, if it has
an invalid timestamp, and the receiving host honors the small incomplete segment with a valid
timestamp, gaps in TCP sequence numbers are formed. Finally, overlap 3-5 is unique because
both segments start and end at the same sequence number. If either one is invalid, the other forms
a complete content.

Let’s look at the results of the Round1, Case1 series of tests performed on an Ubuntu Linux 2.6
kernel host where the three-way handshake timestamp values are non-zero and in-order segment
1 has a valid timestamp.

Figure 7. Results of timestamp tests where three-way handshake and segment 1 have non-zero
timestamp values

The first column on the left lists the segment overlap conditions. For instance, “3.3-8” represents
segment 3.3 and 8 overlaps from the Sturges/Novak segment overlap model in Figure 6. Each of
the nine timestamp tests and overlaps that the receiving Linux host favored follow the segment
overlap number (1-, 2-, 3-, etc). A result of “3A” means that the original segment (3.3) is
favored; a result of “3B” means that the subsequent segment (8) is favored. Finally, a result of
“rej” indicates that either both segments 3A and 3B have old timestamps (test 7) or that the
receiving host discards a segment that was vital in creating the entire HTTP request. When the
receiving host discards it, a gap in TCP sequence numbers is created and the receiving host
acknowledges only valid segments to that point.

3.3-8: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-rej
1-4: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-rej,9-rej
3.4-9: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-rej
3.5-10: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-rej
3.6-11: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-3B
3-5: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-3B
2-4: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-rej
3.1-6: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-3B
3.2-7: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-3B

 Sourcefire, Inc. All rights reserved. October 27, 2006 19

Let’s examine some of the results from overlapped segments 3.3 and 8. This particular overlap is
an example of where segment 3.3 wholly consumes segment 8 because it starts before and ends
after segment 8. Linux 2.6 favors segment 3.3 when we conducted our previous tests that had no
timestamps. Test 1 for Round 1, Case 1 is where the timestamp values on the three-way
handshake are 10000, in-order segment 1 has a valid timestamp of 11111, followed by segment
3A with a timestamp value of 22222 and segment 3B with a timestamp value of 33333, and
finally segment 2 arrives with a valid timestamp value of 12345. All timestamps are valid and we
need to resort to the overlap model to determine which of the two segments is favored. As we
mentioned, Linux 2.6 favors the original segment when the original segment (3.3) begins before
and ends after the subsequent segment (8). Our results show that the receiving host favors
original segment 3A as we expect since all timestamps are valid.

Timestamp tests 2 through 6 manipulate the values of 3A and 3B to contain no timestamp, the
same timestamp, or give 3B has old timestamp. In each of these cases, the receiving host still
favors segment 3.3. But now, let’s look at what happens in test 7 where timestamps on 3A and
3B are both 0. These are old timestamps compared to segment 1’s timestamp of 11111. The
receiving host essentially rejects them both. Test 8 is where segment 3B has an old timestamp so
segment 3A or 3.3 in our overlap model has a valid timestamp and forms a complete content by
itself. Finally, test 9 examines where the timestamp on segment 3A is old and segment 3B is
valid. The receiving host favors Segment 3B, but since it alone creates gaps in the TCP sequence
numbers, the receiving host never gets an entire HTTP request. The entire set of results for tests
on the Ubuntu Linux 2.6 host is found in Appendix A.

In aggregate, for this series of tests, we observe that a Linux host favors the overlap it would if
there were no timestamps on the segments for all tests except when a segment with an old
timestamp exists. More generally for any operating system, we find anomalous behavior with a
given round and case of tests and not with any given timestamp or overlap test within the
particular series. For instance, in the results discussion that follows this section in Figure 8, we
find unexpected behavior for Windows 2003 when the three-way handshake value is zero and
there is an in-order segment 1 with a timestamp. The entire series of tests – all segment overlaps
and all nine timestamp tests - share this same deviant behavior. We deduce from this that
timestamp processing occurs first before overlap processing. It makes sense when you think
about it – a receiving host must first evaluate an incoming segment to ensure that both the
timestamp and TCP sequence numbers are valid before processing it.

While performing tests, we unearthed some unexpected differences between the results from
individual segment overlap tests and the results from the segment overlap model. The
explanation of differences is complex, long-winded, and best not discussed here. If you care to
learn more, please reference the paper “Target-Based TCP Stream Reassembly”, specifically the
section “Model Versus Individual Overlap Test Differences”.

 Sourcefire, Inc. All rights reserved. October 27, 2006 20

Results

We ran these tests against some current operating systems that support the TCP timestamp
options - Windows 2000, Windows 2003, AIX, MacOS/BSD, OpenBSD, FreeBSD, HPUX,
Linux, and Solaris to evaluate target-based responses. We attempted to run timestamp tests
against a Cisco device using SSH as the application protocol instead of HTTP, but not only did it
not reflect a TCP timestamp option in the returned SYN/ACK, it would not even return any
response if any segment after the server’s SYN or ACK had a timestamp on it.

 Windows 2003 Win2k-Server Linux 2-6 Solaris HPUX 11

R1-C1 3whs=0, in-order segment 1 w/ ts
Unexpected
behavior Expected behavior TS not supported1 Expected behavior

Unexpected
behavior

Segments 3A/3B relative to segment 1 Ignores timestamps Segment 1 baseline ts
No timestamp
quirk2

Ignores
timestamps

R1-C2 3whs!=0, in-order segment1 w/ts Expected behavior Expected behavior Expected behavior Expected behavior
Unexpected
behavior

Segments 3A/3B relative to segment 3-whs 3-whs baseline ts 3-whs baseline ts 3-whs baseline ts
No timestamp
quirk2

Ignores
timestamps

R2-C1 3whs=0, in-order segment 1 no ts Expected behavior Expected behavior TS not supported1 Expected behavior
Unexpected
behavior

Target-based segment overlap policy No baseline ts No baseline ts
No timestamp
quirk2

Ignores
timestamps

R2-C2 3whs!=0, in-order segment 1 no ts Expected behavior Expected behavior Expected behavior
Unexpected
behavior

Unexpected
behavior

Segments 3A/3B relative to segment 3-whs 3-whs baseline ts 3-whs baseline ts 3-whs baseline ts Ignores timestamps
Ignores
timestamps

R3-C1 3whs=0, delayed segment 1 w/ ts Expected behavior Expected behavior TS not supported1 Expected behavior
Unexpected
behavior

Target-based overlap until segment 1
arrives No baseline ts No baseline ts

No timestamp
quirk2

Ignores
timestamps

R3-C2 3whs!=0, delayed segment1 w/ts Expected behavior Expected behavior Expected behavior Expected behavior
Unexpected
behavior

Segments 3A/3B relative to segment 3-whs 3-whs baseline ts 3-whs baseline ts 3-whs baseline ts
No timestamp
quirk2

Ignores
timestamps

R4-C1 3whs=0, delayed segment 1 no ts Expected behavior Expected behavior TS not supported1 Expected behavior
Unexpected
behavior

Target-based segment overlap policy No baseline ts No baseline ts
No timestamp
quirk2

Ignores
timestamps

R4-C2 3whs!=0, delayed segment 1 no ts Expected behavior Expected behavior Expected behavior
Unexpected
behavior

Unexpected
behavior

Segments 3A/3B relative to segment 3-whs 3-whs baseline ts 3-whs baseline ts 3-whs baseline ts
Ignores some
timestamps

Ignores
timestamps

Figure 8. Timestamp results of all tested operating systems

1 Linux 2.4/2.6 does not support a TCP timestamp option when the client TCP timestamp option = 0
2 Solaris stops returning the TCP timestamp option if it receives a segment with no timestamp option

The first column lists the eight series of tests (R1-C1 is the abbreviation for Round 1, Case 1 etc.)
conducted against each destination host. The expected behavior for the test case is listed

 Sourcefire, Inc. All rights reserved. October 27, 2006 21

underneath – timestamps on segments 3A/3B should have a baseline timestamp from the three-
way handshake segments, or from segment 1, or no baseline at all so we expect it to revert to
favoring segment 3A or 3B based on the target operating system overlap policy instead of the
timestamp.

Windows 2003 behaves as we expect when there is a non-zero timestamp value on the three-way
handshake. It totally ignores old timestamps when the three-way handshake has zero timestamps.
This is expected behavior when there is no timestamp on segment 1. But, we expect the receiving
host to compare timestamps on segments 3A and 3B to the valid timestamp value on the segment
1 that arrived before them.

Windows 2000 Server, AIX, MacOS/BSD/OpenBSD/FreeBSD all respond identically. They all
behave as expected. As we mentioned earlier, Linux 2.6 is atypical because it does not reflect the
existence of the TCP timestamp option when the client sends a timestamp value of zero in the
three-way handshake. Otherwise, it follows the expected behavior. Ironically, Linux 2.2 kernels
reflect the use of the TCP timestamp option when they receive a SYN packet with a timestamp
value of zero. Solaris has a quirk where it no longer honors or sends the TCP timestamp option if
it receives a segment that does not have a timestamp on it. This behavior is present on all test
suites, but this oddity alters the expected outcome only when the three-way handshake timestamp
values are non-zero and segment 1 has no timestamp. Finally, HPUX 11 ignores the timestamps
on any segment that arrives out of order. All of the tests we performed altered the timestamp
values on segments with out-of-order TCP sequence numbers so the results appear as if the
segments had valid timestamps.

 Sourcefire, Inc. All rights reserved. October 27, 2006 22

Conclusions

It is apparent that various operating systems respond uniquely to uncommon and common
combinations of TCP timestamp values. A savvy attacker who understands a particular target
host’s behavior can fabricate TCP timestamps to evade an IDS/IPS that is unaware of the
subtleties of TCP timestamps. It is not enough for an IDS/IPS to be aware of the use of TCP
timestamps, it must also know how a given target-host will react and then respond appropriately.

 Sourcefire, Inc. All rights reserved. October 27, 2006 23

References:

1RFC 1323 – TCP Extensions for High Performance, V. Jacobson, R. Braden, D. Borman, 1992

 Sourcefire, Inc. All rights reserved. October 27, 2006 24

Appendix A – Example of Results From Tests for Ubuntu 2.6

 Ubuntu 2.6 Results

===
Round 1: Inline segment 1 with timestamp

 Zero timestamp on three-way handshake

3.3-8: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
1-4: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
3.4-9: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
3.5-10: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
3.6-11: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-3B,8-3B,9-3B
3-5: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
2-4: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-3B,8-3B,9-3B
3.1-6: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-3B,8-3B,9-3B
3.2-7: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-3B,8-3B,9-3B

 Timestamp on three-way handshake

3.3-8: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-rej
1-4: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-rej,9-rej
3.4-9: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-rej
3.5-10: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-rej
3.6-11: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-3B
3-5: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-3B
2-4: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-rej
3.1-6: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-3B
3.2-7: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-3B

===
Round 2: Inline segment 1 with NO timestamp

 Zero timestamp on three-way handshake

3.3-8: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
1-4: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
3.4-9: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
3.5-10: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
3.6-11: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-3B,8-3B,9-3B
3-5: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
2-4: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-3B,8-3B,9-3B
3.1-6: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-3B,8-3B,9-3B
3.2-7: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-3B,8-3B,9-3B

 Timestamp on three-way handshake

3.3-8: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-rej
1-4: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-rej,9-rej
3.4-9: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-rej
3.5-10: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-rej
3.6-11: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-3B
3-5: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-3B
2-4: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-rej
3.1-6: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-3B
3.2-7: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-3B

 Sourcefire, Inc. All rights reserved. October 27, 2006 25

===
Round 3: Delayed segment 1 with timestamp

 Zero timestamp on three-way handshake

3.3-8: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
1-4: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
3.4-9: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
3.5-10: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
3.6-11: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-3B,8-3B,9-3B
3-5: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
2-4: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-3B,8-3B,9-3B
3.1-6: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-3B,8-3B,9-3B
3.2-7: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-3B,8-3B,9-3B

 Timestamp on three-way handshake

3.3-8: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-rej
1-4: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-rej,9-rej
3.4-9: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-rej
3.5-10: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-rej
3.6-11: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-3B
3-5: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-3B
2-4: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-rej
3.1-6: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-3B
3.2-7: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-3B

===
Round 4: Delayed segment 1 with NO timestamp

 Zero timestamp on three-way handshake

3.3-8: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
1-4: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
3.4-9: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
3.5-10: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
3.6-11: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-3B,8-3B,9-3B
3-5: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-3A,8-3A,9-3A
2-4: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-3B,8-3B,9-3B
3.1-6: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-3B,8-3B,9-3B
3.2-7: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-3B,8-3B,9-3B

 Timestamp on three-way handshake

3.3-8: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-rej
1-4: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-rej,9-rej
3.4-9: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-rej
3.5-10: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-rej
3.6-11: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-3B
3-5: 1-3A,2-3A,3-3A,4-3A,5-3A,6-3A,7-rej,8-3A,9-3B
2-4: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-rej
3.1-6: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-3B
3.2-7: 1-3B,2-3B,3-3B,4-3B,5-3B,6-3B,7-rej,8-rej,9-3B

3A – means that the original segment was favored
3B – means that the subsequent segment was favored
rej – means that the receiving host rejected the entire or partial
segment 3A/3B and the whole request wasn’t received

