
11

All participants are in listen-only mode.

Welcome!

Our presentation will begin shortly…

Audio for today’s
presentation will be
streamed through your
computer speakers.

Performance Rules Creation
VRT Rules Methodology

33

What madness today?

Review VRT’s rule generation methodology
Examine preprocessors
• Why they are used
• How they impact detection
• Configuration of key preprocessors

Detection engine
• How the rules are parsed
• Performance considerations
• 2.8.2 Update

44

What is a DQOH?

Matthew Olney
(irc nick: dqoh)

VRT Security Analyst for two years
Primary Responsibilities:

• Snort rules generation
• QA for SEU and VRT rules feed
• Purveyor of bad ideas

Past life:
• Network and Security Engineer

• Cisco
• Snort
• Open source security products

VRT Rules Methodology

66

The Goal

Write a rule that protects against the triggering
conditions of the vulnerability, rather than
specific exploits.

77

Step 1: Research the vulnerability

For example, for an overflow:
What data structures are involved?
How are those structures populated?
What checks protect those structures?
How do you get data to those structures?
And of course: What pointers can be
overwritten?

88

Step 2: Modeling the protocol

How is the attack delivered?

How is data transferred across the network?
• What overarching protocol and port?
• How is the data laid out in the packet?

How do we key in to the part of the data we
need to examine?
What obfuscation and evasions options are
available to an attacker?

99

Step 3: Identify the triggering
conditions

Combine the information from steps 1 and 2
Make the detection as precise as possible:
• TCP or UDP
• Port number
• Established connection?
• Direction of traffic (to_server or to_client)?
• Target the field that contains the problematic data
• Check that the field will be processed

Make any modifications necessary to account
for false-positives or evasions.

1010

Step 4: Testing and verification

Analyst test
• Once the rule is written, the analyst will test it in a

limited test environment.
• Provide final rule to Team Lead.

Test Suite
• Automated test cases
• 16 million checks
• Looking for:

• Performance issues
• False positives
• False negatives

1111

Detection Methodology Summary

To write a successful rule we need to know:
• How the attack affects the targeted system
• How the data for that system is transferred across

the wire
• What the triggering conditions are
• Rule has to be functional and not impact

performance
To really do the last point, we need to
understand more about how Snort works…

Snort Architecture
(Preprocessors)

1313

Why Architecture is Important

For a given detection problem there is often
more than one solution:
• Preprocessor
• Content
• PCRE (or not…)

Understanding the architecture enables us to
build the correct rule to maintain performance
and maximize detection.
We need to know how to configure Snort to
support our detection

1414

Snort Basics Architecture

Packet Capture

Snort

Packet Decoder

Preprocessors

Detection Engine

Outputs

1515

Decoder Functionality

Decoder receives a blob
of data
Decoder adds pointers
to critical data locations
• Ethernet header
• IP header
• TCP header
• Payload

Small set of sanity
checks are made here

Network

Tap

Data Blob

D
ecoder

Packet

1616

Decoder Function

Blob of data in:

Decoded packet structure out:

Blob o’ data

PacketEthernet
Header

IP
Header

TCP
Header PAYLOAD

1717

Preprocessors

Preprocessors do one or more of the
following:
Provide detection for attacks and activity not
able to be done by standard snort rules
Provide normalization services to present data
in a standardized format
Provide reassembly services so that detection
can be performed against a complete
message

1818

Preprocessors:
Important Thing to Know

Preprocessors are loaded in the order they
occur in your snort.conf (or equivalent)
Packets flow through preprocessors in the
order they are loaded
Ensure the preprocessors are loaded in a
rational manner:

Frag3

Stream5

http_inspect

P
rocessing

1919

Frag3

Provides target based IP defragmentation
Reassembles fragmented packets into a
pseudo-packet
Pseduo-packet is fed back into decoder for
processing
Original fragmented packets continue through
the detection sequence also
Also provides alerts (GID:123) for certain
fragmentation based attacks

2020

Stream5

Provides target-based TCP reassembly
Provides state tracking for TCP, UDP and
ICMP
Reforms TCP messages into a pseudo-packet
and forwards back into the decoder for full
detection
Provides alerts for certain TCP reassembly
attacks (GID: 129)

2121

Stream5 Configuration

“Ports”
• Specifies the ports for reassembly
• Configuration default:

• ports client 21 23 25 42 53 80 110 111 135 136
137 139 143 445 513 514 1433 1521 2401 3306

• Port numbers provided are always server side port numbers
• ‘client’ in this case meaning ‘traffic originating from the client’
• To add port 80 client side reassembly:

• ports both 80
• ports server 80

Detection impact
• Modification to the configuration may be necessary to support

additional ports or to reassemble for client-side attacks.

2222

Amazing Snort Packet Generator!

Snort

Packet Decoder

Preprocessors

Detection Engine

Outputs

Frag3

Stream5

O
riginal P

acket

Two
additional
pseudo
packets are
generated as
reassembly
occurs

2323

http_inspect

Provides normalization support for the URI
Places the normalized version of the uri in the
“URI” buffer
Also provides alerts (GID: 119/120) for a set of
evasions and attacks

GET /downloads/../cgi-bin/../pics\../downloads/./snort.tar.gz HTTP/1.0

/downloads/snort.tar.gz

2424

http_inspect: flow_depth

Performance tunes snort to ignore portions of
the HTTP response (traffic to client only)
Default value is to look at only the 300 bytes of
the response
Max configurable size of flow_depth is 1460
flow_depth can cause false negatives
flow_depth: 0 will cause snort to process the
entirety of the HTTP response
This can lead to performance issues

2525

Detection concerns based on
preprocessors

Preprocessors can significantly impact what
you see
• Normalization
• Truncation
• Reassembly

Preprocessors can also provide detection
capability for certain problematic traffic

Snort Architecture
(Detection Methodology)

2727

Optimized Rule Evaluation

Rules are loaded into data structures built to
make Snort run as quickly as possible
Goal is to evaluate packets only with rules with
a chance to fire
Before Snort 2.0, rules were organized into
“rule chains”:
• Chains of rules were built with common headers:

• src IP / dst IP / src Port / dst Port

• Packets only ran on chains with matching headers
Snort 2.0 introduced the fast pattern matcher

2828

Fast Pattern Matcher

Rules are parsed into categories based on the
protocol and the destination port (port groups)
Within any given pair, the fast pattern matcher
parses the rule looking for the first, longest,
non-negative content match:
• (content:”a”; content:”bc”; content:”de”;

content:!”biscuits”;)
• Results in the fast pattern using “bc”

Rules are only run on packets that have
matching content

2929

Fast Pattern Matching Example

Bottom category is for
rules with no content
So…if we all send an
email to the blue
monkey bar we will
evaluate only:
• 2,3,4,5,8,9,11,13, 22

Every packet sent to
tcp/25 will be evaluated
against the rules with no
content

tcp/25

foo

bar

monkey

biscuits

1, 6,7,12

2, 5, 8

3,4,9,11

10

13,22

3030

Rule Options List

Rules are parsed into a
sequence of options
When evaluation occurs,
options are checked in
sequence
When developing rules
look for ways to “bail
early”
Dsize, flow and flowbit
checks are fast ways to
terminate rule
processing

Example options list:
• flow: to_server, established
• flowbits: isset, haz.biscuits
• content: “gravy”
• byte_test:2,>,15,relative;

Rule header information is
also checked:
• tcp $external_net any ->

$home_net any

3131

This just in…Snort 2.8.2

Instead of a list of rules to process:

Snort 2.8.2 returns a tree intended to speed
through redundancies in detection between
multiple rules
During initialization, for each longest content
(and for the set of rules with no content), a
tree is built

foo 1, 6,7,12

3232

If a rule alerted in a forest…

Longest content: “I love biscuits”

flowbits: isset, haz.gravy

content: “chipped beef”

content:”Jelly”; nocase

content: “grape”content: “strawberry”

(flowbits: isset, haz.gravy; content:”I love biscuits”; content:”chipped beef”; sid: 1)
(content:”I love biscuits”; content:”Jelly”; nocase; content: “strawberry”; sid: 2)
(content:”I love biscuits”; content:”Jelly”; nocase; content: “grape”; sid: 3)

alert sid: 1 alert sid: 2 alert sid: 3

3333

Detection criteria based on
architecture

In all cases, if possible, have a content match
Make the match as long as possible
Where multiple rules offer similar detection,
mirror the detection for as long as possible
Ensure that checks involving the header or
stream state (for example, flow and flowbits)
are done first in the rule

3434

Questions?

If you have questions in general:
• snort-sigs mailing list
• snort-users mailing list
• #snort on freenode irc
• research@sourcefire.com

If you have qeustions or comments on this
presentation:
• molney@sourcefire.com

3535

Sourcefire Commercial Products

Sourcefire 3D Sensors
• Sourcefire IPS™
• Sourcefire RNA™
• Sourcefire RUA™
• Sourcefire NetFlow Analysis

Sourcefire Defense Center™
Sourcefire Intrusion Agent for Snort

Sourcefire 3D™ System

3636

For More Information…

Sourcefire 3D System
Flash Demo

“Extending Your Investment
in Snort” Technology Brief

Available Now on Sourcefire.com

3737

Questions?

Please submit
questions via

the Q&A
interface in the

lower-right
corner of your

screen.

