snuncE iTe _I HTTP IDS EVASIONS REVISITED

Sourcefire, Inc.
9212 Berger Road

_ Suite 200
www.sourcefire.com Columbia, MD 21046

September 2004




SOURCE/ e H1TP IDS Evasions Revisited
By Daniel Roelker

Table of Contents

IR 43 4o T ¥ o o
Il. IDS HTTP Protocol ANalYSis .........cccuumimmmmmmmmmmmmmmmmimnsnsssssssssssssssssssssssssssssssssssssssssnne
= ) I L\ VE= ol o o] (oo I =T 7 o o T PSPPSRSO
b)  Invalid Protocol Field DECOTING .....cc.uiiuiiiiiiiiiiiiitiesee et s
lll. Invalid Protocol Field Decoding.........cccccueemmmmmmmmmmmmmmmmmmmsssssssssssssssssssssssssssssssnnnnns
= ) I o 1 =1 g oo o [T To R S PSPPSRSO
b) Double Percent HEX ENCOQING .......couiiiiiiiiiiiiieie e e e
C) Double Nibble HEX ENCOGING .....oitiiiiiiieie ettt et ettt ne e
d)  First Nibble HEX ENCOING....c..eiitiiiiiiieieeteet ettt ettt sttt e sb e b et e et e e nbeenbeenneens
€) Second Nibble HEX ENCOTING .....coiuiiiiiiiiiieiieieese ettt ettt ettt sbeenbeenreens
L) I AL < 2 =1 1o To |10 Te TP RPN
g) UTF-8 Bare Byte ENCOING .....coiuiiiiiiieieeiie ettt ettt ettt ettt et et e e st e e nbeenneens
h)  MiICrosoft %U ENCOTING .....coiuiiiiiiiiii ettt et
i) MISMAtCh ENCOGING ...ttt ettt sttt sttt e ne e
IV. Invalid Protocol Parsing ............ceeeeeimmiimmmmimmiminnsisssssssssssssssssssssssssssssssssssssssssssssees
a) URL Evasion Using Request PIiPeliNes ..........cooiiiiiiiiiiiiieieeeieesee ettt
b) Parameter Evasion using POST and Content-ENCOAING........ccciiuiiiiiiiiiiiiiiee e e
V. CoNCIUSION ... ——————————
7 TR Y o T o1 =1 o T G
E= ) I U | S g Teo T [T ol o (o e ] = o PSSO RUSURPRPR
b)  Unicode Code Page MapPET......c.coiiiiiiiiiiiiite ittt st sttt e ane e
VII. Acknowledgment...........ccooiiiiiiiii
VIII. References.......ccccooiiiiiiiii s

Page 2 of 7



SOURCE/ e H1TP IDS Evasions Revisited

By Daniel Roelker

Abstract - This paper describes two general IDS
evasion techniques and applies them to the
HTTP protocol. These techniques are illustrated
using some older types of HTTP evasions and
some new HTTP evasions.

The different types of evasions occur in both
the Request URI portion of the HTTP protocol
and by using the protocol standard in HTTP/1.0
and HTTP/1.1.

The evasions within the Request URI
address evasion types possible in encoding
and obfuscating the URL and parameter fields
in the Request URI. The various methods of
valid URL encodings for both the Apache and
Internet Information Server are explained and
examples given for each type of encoding.
HTTP IDS evasions are also demonstrated
using the HTTP protocol properties against the
IDS. These evasions incorporate the request
pipeline property and the content-encoding
header.

This paper should help explain how HTTP
IDS evasions work and give the reader enough
knowledge to generate their own HTTP IDS
evasions using these general principles and
examples.

Index Terms - computer security, hypertext
transfer protocol, intrusion detection, web
scanning, intrusion detection evasions

1. INTRODUCTION

TTP IDS evasions have been popular since Rain

Forest Puppy’s (RFP) web scanner, whisker, was
first released to the public [1]. Many of the original
HTTP IDS evasions were contained in that first release,
from multiple slashes that would obfuscate directories,
to the more advanced evasions, like inserting HTTP/1.0
in the URL to evade an algorithm that an IDS might use
to find the URL in a packet.

Besides the evasions that whisker presented, there
were other types of HTTP obfuscations that were being
propagated as well. One of these was obfuscating a URL
by using an absolute URI vs. a relative URI [2]. While
these other types of evasions were interesting, they were
not as evasive or popular as the basic whisker scans.

The next popular evasion came about with the
public release by RFP of the UTF-8 unicode encoding
exploit for the Microsoft Internet Information Server
(IIS) [3]. Besides being a serious vulnerability for IIS,
the unicode exploit also presented an encoding method
for URLs in a way that had not been implemented in

IDSs. Up until this point, most IDSs had instituted
safeguards against the previous whisker evasions of
ASCII encoding and directory traversal, but did not
protect against UTF-8 encoding of Unicode code points.
One of the more professional write-ups that explained
this type of HTTP IDS evasion was done by Eric Hacker
[4]. Some of the insights in Hacker’s paper are
examined and explained in this paper as well. We will
take the points that Hacker illustrates and delve into
what these encodings mean and how they can work
together to provide more bizarre encodings.

The other type of HTTP IDS evasions that are
covered in this paper utilizes the HTTP protocol
properties. One of these evasions uses the property of
request pipelining. The other evasion uses the content-
encoding header to encoding HTTP request parameters
in a request payload.

II. IDS HTTP PROTOCOL ANALYSIS

In order for an IDS to handle URL attacks, the IDS
must inspect the HTTP URL field for malicious attacks.
The two most popular IDS inspection methodologies,
pattern matching and protocol analysis, currently behave
similarly because each methodology must search for
malicious URLSs and this entails some form of pattern
matching and some form of HTTP protocol analysis.

In the beginning, the differences between these
two methodologies were what you would expect. The
protocol analysis methodology only searched the URL
field of the HTTP stream for malicious URLSs, while the
pattern matching methodology searched the whole
packet for the malicious URL.

The two methodologies performed similarly until
the malicious URLSs started to be encoded and
obfuscated. At this point, the protocol analysis
methodology merely had to add the appropriate
decoding algorithms to the URL field. They had already
built in HTTP protocol decoding to their engine. But the
pattern matching methodology had no way of knowing
which part of the packet to normalize. The pattern
matching methodology had to incorporate some form of
protocol analysis to find the URL field so that it could
apply the appropriate decoding algorithms. A form of
HTTP protocol analysis was added to the pattern
matching methodology and the two methodologies once
again began to behave similarly.

Because of the current similarities in these IDS
methodologies, the HTTP IDS evasions that are
discussed here apply to both types.

The first general IDS evasion is invalid protocol
parsing. For example, if the HTTP URL is not found
correctly then the malicious URLs will not be detected if

Page 3 of 8



By Daniel Roelker

they are encoded. The reason being that if the IDS does
not find the URL, it cannot decode it.

If the URL is found correctly, the IDS must know
the proper decoding algorithms, otherwise the URL will
again be decoded incorrectly. This is the second general
type of IDS evasion, invalid protocol field decoding.

a) INVALID PROTOCOL PARSING

IDS evasions that use invalid protocol parsing are
demonstrated by RFP’s whisker[1] and Bob Graham’s
SideStep[5]. The difference between these two programs
are that whisker used flawed IDS protocol parsing to
evade detection, whereas SideStep used valid aspects of
application layer protocols to evade IDSs that had
implemented naive protocol decoders.

In this spirit, invalid protocol parsing evasions are
particularly effective against two HTTP protocol fields,
the URL and the URL parameters.

For example, if the IDS HTTP decoder assumes that
there is only one URL per HTTP request packet, then if
two URLs are sent in one packet, the IDS does not parse
the second URL correctly. This is explained in the
section on request pipelining evasions.

b) INVALID PROTOCOL FIELD DECODING

Invalid protocol field decoding tests an IDS capability
in the various types of encoding and normalization that
is capable in a specific protocol field.

In the case of HTTP, this is most clearly seen in the
URL field. An IDS can be tested for compliance to
HTTP RFC encoding standards and also against the
unique encoding types for different web servers, like
IIS. If the IDS cannot decode certain types of URL
encoding, then the attacker will use these encodings to
bypass detection of malicious URLs.

Another method of invalid protocol field decoding for
HTTP is through directory obfuscation. Directory
obfuscation is accomplished through the manipulation of
directory properties. For example, /cgi-bin/phf can be
manipulated using multiple slashes instead of one slash,
or it could use directory traversals to obfuscate the exact
directory path.

It is important to realize that directory obfuscation can
only obscure a malicious URL if the IDS looks for a
URL that includes at least one directory besides the file
to access. In the instance of our attack example, /cgi-
bin/phf, directory obfuscation will work because the IDS
is looking for the “phf” file in the “cgi-bin” directory.
However, if the IDS is looking for just the “phf” file, the
directory obfuscation would not work, since there is no

HTTP IDS Evasions Revisited

directory path in that particular content.

III. INVALID PROTOCOL FIELD DECODING

URL obfuscation starts out with the various types of
encoding methods that HTTP servers accept.
Admittedly, most of the encoding types are attributed to
the IIS server, but for the sake of completeness, every
type of encoding should be tested against each HTTP
server.

The idea behind using URL encoding for obfuscating
web attacks stems from the lack of research in most IDS
methodologies to adequately define and implement the
different encoding types for web servers.

If an IDS cannot decode an encoded type for a web
server, then the IDS cannot tell whether a URL is
malicious. Both pattern matching and protocol
inspection IDS technologies have this problem.

There are only two RFC standards for encoding a
Request URI: hex encoding and UTF-8 Unicode
encoding. These two methods are encoded using the ‘%’
character to escape a one encoded byte. It should also be
noted that these are the only two URL encoding types
that Apache accepts.

Most of the other encoding types that we will be
looking at are server specific and non-RFC compliant.
The Microsoft IIS web server falls in this category.

URL obfuscations are also covered in this section and
follow the different encodings.

a) HEX ENCODING

The hex encoding method is one of the RFC
compliant ways for encoding a URL. It is also the
simplest method of encoding a URL. The encoding
method consists of escaping a hexadecimal byte value
for the encoded character with a ‘%’. If we wanted to
hex encode a capital A (ASCII map hexadecimal value
of 0x41), the encoding would look like the following:

e %41 ="A’

b) DOUBLE PERCENT HEX ENCODING

Double percent hex encoding is based on the
normal method of hex encoding. The percent is encoded
using hex encoding followed by the hexadecimal byte
value to be encoded. To encode a capital A, the
encoding is:

%2541 ="A’

As can be seen, the percent is encoded with the

%325 (this equals a ‘%’). The value is then decoded

Page 4 of 8



By Daniel Roelker

again with the value this time being %41 (this equals the
‘A’).
This encoding is supported by Microsoft IIS.

¢) DOUBLE NIBBLE HEX ENCODING

Double nibble hex encoding is based on the
standard hex encoding method. Each hexadecimal
nibble value is encoded using the standard hex
encoding. For example, to encode a capital A, the
encoding would be:

* %%34%31="A’

The normal hex encoding for A is %41. How
double nibble hex encoding works, is that the
hexadecimal nibble values are each encoded in the
normal hex encoding format. So, the first nibble, 4, is
encoded as %34 (the ASCII value for the numeral 4),
and the second nibble, 1, is encoded as %31 (the ASCII
value for the numeral 1).

In the first URL decoding pass the nibble values
are translated into the numerals 4 and 1. Since the 4 and
1 are preceded by a %, the second pass recognizes %41
and decodes that as a capital A.

This encoding is supported by Microsoft IIS.

d) FIRST NIBBLE HEX ENCODING

First nibble hex encoding is very similar to double
nibble hex encoding. The difference is that only the first
nibble is encoded. So a capital A, instead of being
encoded %%34%31 for double nibble hex, is encoded in
the following example using first nibble hex encoding:

® %%341=°A’

As before, during the first URL decoding pass the
%34 is decoded as the numeral 4, which leaves %41 for
the second pass. During the second pass, the %41 is
decoded as a capital A.

This encoding is supported by Microsoft IIS.

e¢) SECOND NIBBLE HEX ENCODING

Second nibble hex encoding is exactly the same as
first nibble hex encoding, except the second
hexadecimal nibble value is encoded with normal hex
encoding. So a capital A is encoded as:

e %4%31="A

The %31 gets decoded to a numeral 1 in the first
decoding pass, which then the %41 gets decoded as a
capital ‘A’.

This encoding is supported by Microsoft IIS.

f) UTF-8 ENCODING

1. UTF-8 Introduction

UTF-8 encoding allows values larger than a single
byte (0-255) to be represented in a byte stream. HTTP
web servers use UTF-8 encoding to represent Unicode
code points that are outside of the ASCII code point
range (1 —127).

UTF-8 works by giving special meaning to the
high-bits in a byte. A UTF-8 two and three byte UTF-8
sequence is illustrated below:

110XXXXX 10XXXXXX
1110xxxx 10XXXXXX 10XXXXXX

(two byte sequence)
(three byte sequence)

The first byte in a UTF-8 sequence is the most
important because it contains how many bytes are in the
complete UTF-8 sequence. This is determined by
counting the high bits up to the first zero. In the two
byte sequence example, the first byte contains two high
bits set followed by a zero. So this is indeed a two-byte
UTEF-8 sequence. The rest of the bits after the zero in the
first UTF-8 byte are bits in the final value to be
computed.

UTF-8 bytes following the initial byte all have the
same format of setting the high bit followed by a zero.
Two bits are used to identify a UTF-8 byte, and six bits
are used in computing the value.

To encode UTF-8 in the URL, the UTF-8 sequence
is escaped with a percent for each byte. A UTF-8
encoded character is illustrated as, %C0%AF = /’.

2. Unicode Code Point Introduction

UTF-8 encoding is used to encode Unicode code
point values. Code point values are usually contained in
the range of 0 — 65535. Any code point value above 127
uses UTF-8 encoding in HTTP URLs.

Unicode code point values from 0 — 127 map one
to one with ASCII values. That leaves about 65408
values to represent other characters in languages like
Hungarian or Japanese.

Usually these languages have their own Unicode
code page that represents the characters that they need.
Unicode code point values are derived from Unicode
code pages. Each Unicode code page can have a unique
set of values, so as Unicode code pages change so do the
characters that a Unicode code point represent. If the
wrong code page is used to interpret Unicode code
points, then the results are invalid. This is concept is
very important in URL encoding as seen in the next
section.

Page 5 of 8



By Daniel Roelker

3. Bringing the Evasion Together

There are three characteristics of using UTF-8
encoding to represent Unicode code points that lend
themselves to confusion among IDSs.

The first characteristic is that UTF-8 can encode a
single code point or ASCII value in more than one way.
This has been fixed in the current Unicode standard, but
is still prevalent in web servers (excluding Apache). For
example, a capital letter A is encoded in a two byte
UTF-8 sequence as:

*  %C1%81 (11000001 10000001 = 1000001
=‘A)

The capital letter A can also be encoded in a three
byte UTF-8 sequence as:

*  %E0%81%81 (11100000 10000001
10000001 = 1000001 = ‘A’)

So, using UTF-8 to encode ASCII characters leads
to many different representations.

The second characteristic is that some non-
ASCII Unicode code points also map to ASCII
characters. For example, the Unicode code point 12001
could map to a capital letter A. The only way to know
which code points map to ASCII characters is to either
read the Unicode code map or test all the different
Unicode code points against a server. Currently, the only
web server that is known to do this is the Microsoft I1IS
server.

The third characteristic is related to the second
characteristic. If the Unicode code map is changed or is
not known, then interpreted Unicode code points are
invalid. The reason this is important is because IIS web
servers in China, Japan, Poland, etc. use different code
pages, so if an IDS is not aware of which code page a
web server is running then the URL decoding efforts of
UTEF-8 are invalid. If an IDS is not configurable as to
what Unicode code pages to run for particular servers,
then any web server that does not run the code page that
the IDS has knowledge of is evadable.

g) UTF-8 BARE BYTE ENCODING

UTF-8 bare byte encoding is the same as UTF-8
encoding, except that the UTF-8 byte sequence is not
escaped with a percent. The byte sequence is sent with
the actual bytes. If an A was sent across, it would be:

e 0OxC10x81="A

This type of encoding is only known to run on the

Microsoft IIS server.

h) MICROSOFT %U ENCODING

Microsoft %U encoding presents a different way to
encode Unicode code point values up to 65535 (or two
bytes). The format is simple; %U precedes 4

HTTP IDS Evasions Revisited

hexadecimal nibble values that represent the Unicode
code point value. The format is illustrated as:
e %UXXXX
For example, a capital A could be encoded as:
*  %U0041 ="A’
This is encoding is supported by Microsoft IIS.

i) MISMATCH ENCODING

Mismatch encoding uses different encoding types
to represent an ASCII character and is not a unique
encoding by itself. The mismatch encoding combines
the various types of encoding to encode a single
character.

For example, let’s encode a capital A using the
Microsoft %U encoding method. But since IIS will do a
double decode on a URL, we can use some of the other
methods to encode the %U method. For instance, we can
encode the U in the %U method with a normal hex
encoding. So a simple %U0041 becomes %%550041.
We can then encode the 0041 in normal hex encoding,
or we could pick another type of encoding.

Here’s a more complex encoding mismatch that
works against an IIS server, try to figure out which
ASCII character this encoding represents:

*  %U0025%550%303%37

IV. INVALID PROTOCOL PARSING

a) URL EVASION USING REQUEST PIPELINES

The request pipeline evasion is a type of invalid
protocol parsing evasion. It obscures the URI by using
the protocol characteristics of a request pipeline in
version 1.1 of the HTTP protocol.

The request pipeline standard allows a web client
to send several requests within a single packet. This is
different and should not be confused with the HTTP
keep alive header. Request pipelines send several
requests all in one packet, whereas HTTP keep alive just
keeps the TCP stream open for more requests.

We use the request pipeline feature to embed
several URLSs in one packet. Most IDSs will parse the
first URL correctly, but fail to parse the other URLs.
This leaves an avenue for evasion, because the other
URLSs can now be trivially encoded and any content
matches looking for malicious URLs will fail, because
the IDS did not decode these other URLs.

For example, the following payload uses request
pipelining to evade URL detection:

e GET/HTTP/1.1\r\nHost: \N\n\\nGET
ffoobar.html \r\nHost: \\N\n\nGET
/cgi%2Dbin%2Fph%66 HTTP/1.1\r\nHost:
r\n

Page 6 of 8



By Daniel Roelker

b) PARAMETER EVASION USING POST AND
CONTENT-ENCODING

Another common HTTP protocol field that
contains malicious data or attacks is the URL parameter
field. This is the field where most database and cgi type
attacks occur, and most IDSs contain signatures to
detect malicious parameter keys and values.

A simple way to evade an IDS would be to encode
the parameters as the URL is encoded. But most IDSs
already apply URL decoding methods to the parameter
field as well.

What we do is use a POST request to move the
parameter field to the end of the HTTP request header
section. At this point, the parameter field is in plaintext
and an IDS could easily pick out malicious content here.
Instead, we use the header option, Content-Encoding, to
encode the parameter field in base64 encoding.

At this point, the parameter field has been encoded
in base64 and the request is sent across the wire. Now
the IDS not only needs to parse the POST request
correctly, but it needs to decode the parameter field
using base64 before inspecting the parameter field.

If the IDS actually decoded the parameter field in a
POST request with base64, the decoding effort would be
very time consuming. It would also lend itself to a DOS
attack by sending lots of POST requests with large
parameter fields that would need to be decoded.

V.  CONCLUSION

Two general techniques are used in HTTP IDS
evasions. These techniques are invalid protocol parsing
and invalid protocol field encoding. If an IDS is
unaware of a type of HTTP protocol field encoding it
cannot correctly decode the URL and evasions will
occur. This is the type of technique that the various
encoding discussed used.

If an IDS does not have adequate knowledge of the
HTTP protocol, it can also be evaded. The request
pipeline and content encoding evasions uses this type of
technique.

By examining an IDS protocol decoder, most
evasions can be generated with these two general
techniques.

VIL

VIIL

VI.  APPENDIX

a) URL ENCODER PROGRAM

A tool that illustrates these various decodings and
obfuscations are available at www.idsresearch.org.
Both a Windows GUI application is available, along
with a command line tool for *NIX and Windows.

b) UNICODE CODE PAGE MAPPER

A tool that dumps the Unicode code pages and
code points on a Microsoft system is available at
www.idsresearch.org.

ACKNOWLEDGMENT

RFP and Bob Graham have really pioneered
application-layer IDS evasions. Thanks for your
insightful work.

I’d also like to give a big thanks to Marc Norton
for the many technical discussions we’ve had and for
encapsulating the URL encoder technology into a great
Win32 GUI.

REFERENCES

1. RFP. (1999, Dec. 30). “A look at whisker’s anti-IDS
tactics”. [Online]. Available:
http://www.wiretrip.net/rfp/pages/whitepapers/whiskerids
.html

2. Author Unknown. (2002, Jan. 13). “How to obscure any
URL”. [Online]. Available: http://www.pc-
help.org/obscure.htm

3. RFP. (2000, Oct. 17). “IIS %c1%]1c remote command
execution,” Win2k Security Advice Mailing List. [Online].
Available:
http://archives.neohapsis.com/archives/win2ksecadvice/2
000-q4/0037.html

4.  E.Hacker. (2001, Jan. 3). IDS Evasion with Unicode.
SecurityFocus Infocus. [Online]. Available:
http://www.securityfocus.com/infocus/1232

5. R. Graham. (2000). “SideStep: IDS evasion tool”.
[Online]. Available:
http://www.robertgraham.com/tmp/sidestep.html

Daniel J. Roelker is a lead developer for the Snort Development
Team and IDS researcher at Sourcefire, Inc., where he works on the
Snort 2.0 detection engine, application protocol decoders, portscan
detection, and code integration and auditing. He was previously
employed as a lead developer on the Dragon Network IDS at
Enterasys and at Johns Hopkins Applied Physics Laboratory with the
Department of Defense in Information Operations.

Page 7 of 8



SOURCE/ e H1TP IDS Evasions Revisited
| By Daniel Roelker

About Sourcefire, Inc.

Sourcefire, Inc., the world leader in real-time network defense solutions, is transforming the way organizations
manage and minimize network security risks with its 3D Approach - Discover, Determine, Defend - to securing real
networks in real-time. The company's ground-breaking network defense system unifies intrusion and vulnerability
management technologies to provide customers with the most effective network security available. Founded in 2001
by the creator of Snort, Sourcefire is headquartered in Columbia, MD and has received numerous accolades
including being named a 2004 Company to Watch by Network Computing Magazine and selected as one of the Red
Herring Top 100 privately held companies. At work in leading Fortune 100 and government agencies, the names
Sourcefire and founder Martin Roesch have grown synonymous with innovation and intelligence in network
security. For more information about Sourcefire, please visit www.sourcefire.com.

Page 8 of 8 ©2004 Sourcefire proprietary. All rights reserved. | 9/2004



