

Target-Based Fragmentation Reassembly

Author

Judy Novak
Research Engineer

Sourcefire Vulnerability Research Team

Revision 2.0
April 2005

Prepared by:
Sourcefire, Incorporated

9770 Patuxent Woods Drive
Columbia, MD 21046

800.917.4134
410.290.1616

Page2 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

Introduction

In their landmark 1998 paper, “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection,”1

Thomas Ptacek and Timothy Newsham exposed some weaknesses in intrusion detection systems (IDS). The
authors revealed that intrusion detection systems cannot be effective and accurate because they do not necessarily
process, or perhaps, even observe network traffic exactly as the destination host that receives the message does.
This flaw exists in several layers of evaluation and processing of the packets including the IP, protocol, and
application layers. As an example of the problem, consider traffic that has overlapping fragments that are sent to a
given host. Because different operating systems have unique methods of fragment reassembly, if an intrusion
detection system uses a single "one size fits all" reassembly method, it may not reassemble and process the packets
the same way the destination host does. An attack that successfully exploits these differences in fragment
reassembly can cause the IDS to miss the malicious traffic and fail to alert.

Remarkably, seven years later, many of these problems still exist. One answer to the fragment reassembly dilemma
is a savvy IDS that is aware of the operating system and applications on the hosts that the IDS protects. The term
“target-based” has been coined to identify an intelligent IDS that is informed about hosts residing on the network
and is capable of analyzing traffic sent to those hosts as the host itself analyzes the traffic. This does not solve all
of the problems discussed by Ptacek and Newsham, but it certainly improves the accuracy of the IDS. This can
eliminate false positives about irrelevant alerts such as a Windows exploit bound for a Unix host. As well,
deliberately mangled packets do not dupe the IDS, since it processes those packets exactly as the receiving host
does.

The open source IDS Snort has begun to implement target-based analysis with the frag3 preprocessor. Frag3 is able
to reassemble overlapping fragments using the same policy as the destination host. A user configures the IDS to
apply specific fragmentation reassembly policies for individual hosts or networks. Then, when the Snort sees
overlapping fragments bound for any of these hosts, it knows the appropriate reassembly policy to apply—allowing
both Snort and the destination host to reassemble the fragments identically. This successfully precludes evasion
attacks that use overlapping fragments.

This paper discusses fragmentation attacks, the fragment reassembly policies identified by Vern Paxson and Umesh
Shankar, how Snort frag3 can be used, and finally, how to implement two programs—one to assess the
fragmentation reassembly policy used by a remote host and another to test whether or not an IDS can be evaded by
an attack that employs overlapping fragments.

A Simple Fragmentation Attack

Suppose that an IDS has a signature that alerts on an attempted buffer overflow attack that occurs when an attacker
supplies an overly long username value for FTP authentication. For example, Snort has the following rule to alert
on such an attack:

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP USER overflow attempt";
flow:to_server,established,no_stream; content:"USER"; nocase;
isdataat:100,relative; pcre:"/^USER\s[^\n]{100}/smi";)

This rule looks for traffic that originates outside of and bound for the protected network to the FTP command port.
The alert fires when an established stream to port 21 begins with the content of “USER” with no linebreak in the
following 100 bytes.

Page3 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

Further, suppose an attacker wants to evade the IDS by sending wholly overlapping fragments that differ in content
by a single character. The original fragment contains a content of “USER”; the overlapping fragment contains the
content of “XSER”. TCP/IP implementations elect to regard either the original or subsequent fragment as the valid
one and discard the other. Windows hosts use a policy of accepting the first fragment and ignoring all subsequent
overlapping ones. An IDS that considers the subsequent fragment the valid one will miss an attack that targets a
Windows host because it sees the content of “XSER” instead of USER.

This is a simple and tidy illustration of overlapping fragments; thorough analysis must consider many more
complications such as partially overlapping fragments and the location of the overlap of the fragments. Vern
Paxson and Umesh Shankar conducted extensive fragmentation research involving overlapping fragments and
determined that there are several different fragmentation reassembly policies used by different operating systems.

Paxson/Shankar Model

In the paper titled “Active Mapping: Resisting NIDS Evasion Without Altering Traffic,”2 the authors, Vern Paxson
and Umesh Shankar, include a section that discusses fragmentation techniques as a means of evading intrusion
detection systems. They discovered that there are five different fragment reassembly methods in use by modern
operating systems. They also developed a paradigm of overlapping fragments that tests all methods of reassembly
and can be used to determine which operating systems use which reassembly techniques.

The model used in the Paxson/Shankar paper consists of a series of six fragments of varying offsets, content, and
length. This particular model provides each of the following types of fragments:

• At least one fragment that is wholly overlapped by a subsequent fragment with an identical offset and
length

• At least one fragment that is partially overlapped by a subsequent fragment with an offset greater than the
original

• At least one fragment this is partially overlapped by a subsequent fragment with an offset less than the
original

The following diagram depicts a series of IP fragments, labeled 1 through 6, that illustrate the Paxon/Shankar
model. A fragment’s number indicates its arrival order.

Page4 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

Figure 1 – Paxson/Shankar model

The fragment model used is at the top of the diagram; the legend below it explains the model. The offsets of each
fragment are shown with small numbers above the model. Each fragment arrives in an IP datagram that contains an
offset value in the IP header that represents the byte displacement of the fragment. The receiving host uses this
value to properly reorder the fragments during reassembly. This offset is relative to the protocol header that
precedes it. This discussion of the theory disregards the protocol header type and length, although they are a
concern for implementation purposes. There are two depicted rows of fragments. The first row represents fragments
that arrived first and are hereafter called original fragments. The second row represents fragments that arrived after
the original fragments and are called subsequent fragments.

There are six different fragments numbered 1 through 6 in the diagram. Each colored box represents an 8-byte
chunk of one of these six fragments. For instance, the first box with a label of 1 represents eight bytes of data
starting at offset 0 from the end of the protocol header. The next two boxes with a label of 1 are associated with
fragment 1 and also each represents 8 bytes of data. Therefore, fragment 1 consists of three 8-byte chunks of data
beginning at offset 0 for 24 bytes. The content of each of these 8-byte chunks is 11111111. The other five
fragments have similar content; for instance, fragment 2 has a content of 22222222. The fragments may have
different offsets and lengths.

As explained before, fragments may wholly or partially overlap. In the model, fragment 5 wholly overlaps fragment
3. They both start at offset 48 and are 24 bytes long. They differ only in content, which is used to determine which
fragment is used in the reassembly method for a particular operating system.

The model also requires subsequent fragments that overlap original fragments with offsets less than and greater
than the original. This can be fulfilled using the same fragment, that is, a subsequent fragment with both an offset
greater than one original fragment and an offset less than another original fragment. Fragment 4 (which has an
offset of 8) satisfies the condition of both overlapping an original fragment with an offset greater than an original
fragment (fragment 1, which has an offset of 0) and overlapping an original fragment with an offset less than the
original fragment (fragment 2, which has an offset of 32).

Page5 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

Each fragment differs in content so that when a receiving host uses unique reassembly methods, observers can
discern which fragment is favored. The fragmentation policies employed by the Paxon/Shankar model favor
individual fragment chunks based on two factors – offset and chronology. The offset pertains to the entire fragment
offset; although a particular 8-byte chunk in a fragment may have its own offset, it is associated with the offset at
the beginning of the entire fragment. Chronology denotes whether the fragment chunk is the original or subsequent
at a given offset.

If you test the Paxson/Shankar model, you will observe five different reassembly policies:

• BSD favors an original fragment with an offset that is less than or equal to a subsequent fragment.

• BSD-right favors a subsequent fragment when the original fragment has an offset that is less than or equal
to the subsequent one.

• Linux favors an original fragment with an offset that is less than a subsequent fragment.

• First favors the original fragment with a given offset.

• Last favors the subsequent fragment with a given offset.

The following figures show the fragments sent (for comparison purposes) and the reassembly of the fragments
based on policy.

Figure 2 – Paxson/Shankar model

Figure 3 – Paxson/Shankar reassembly policies

Let’s reexamine each policy to see how reassembly is performed.

Page6 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

Policy When… Overlaps… This fragment
is favored…

Because…

original
fragment 1

original
fragment 1

fragment 1’s offset of 0 is less than fragment 4’s
offset of 8

subsequent fragment 4
original
fragment 2

subsequent
fragment 4

fragment 4’s offset of 8 is less than fragment 2’s
offset of 32BSD

subsequent fragment 5
original
fragment 3

original
fragment 3

fragment 3’s offset of 48 is equal to fragment
5’s offset

original
fragment 1

subsequent
fragment 4

fragment 1’s offset of 0 is less than fragment 4’s
offset of 8

subsequent fragment 4
original
fragment 2

original
fragment 2

fragment 2’s offset of 32 is greater than
fragment 4’s offset of 8

BSD - Right

subsequent fragment 5
original
fragment 3

subsequent
fragment 5

fragment 5’s offset of 48 is equal to fragment
3’s offset

original
fragment 1

original
fragment 4

fragment 1’s offset of 0 is less than fragment 4’s
offset of 8

subsequent fragment 4
original
fragment 2

subsequent
fragment 4

fragment 4’s offset of 8 is less than fragment 2’s
offset of 32

Linux

subsequent fragment 5
original
fragment 3

subsequent
fragment 5

fragment 5’s offset of 48 is equal to fragment
3’s offset

original
fragment 1

original
fragment 1

fragment 1 is the original fragment
subsequent fragment 4

original
fragment 2

original
fragment 2

fragment 2 is the original fragmentFirst

subsequent fragment 5
original
fragment 3

original
fragment 3

fragment 3 is the original fragment

original
fragment 1

subsequent
fragment 4

fragment 4 is the subsequent fragment
subsequent fragment 4

original
fragment 2

subsequent
fragment 4

fragment 4 is the subsequent fragmentLast

subsequent fragment 5
original
fragment 3

subsequent
fragment 5

fragment 5 is the subsequent fragment

Paxson and Shankar implemented their model by placing overlapping fragments in the payload of an ICMP echo
request and evaluating the payload of the ICMP echo reply. They discovered the unique reassembly policies used
by different operating systems. Their implementation required the use of a different ICMP echo request per policy
because ICMP echo requests have an ICMP checksum that is computed by using values found in the ICMP header
and payload. The checksum is different for the reassembled payload because different fragments or partial
fragments are used in the reassembly.

Page7 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

One way to circumvent requiring five different fragmented echo requests, each with an ICMP checksum
corresponding to a different policy, is to have fragment content that has the same ICMP checksum regardless of the
policy used for reassembly. The checksum is computed by taking the one’s complement of all 16-bit values and
summing those values. This is a commutative operation where 16-bit fields can be swapped and the checksum
remains the same.

x = 16-bit data field (header or payload)

checksum = ∑~x

An example of a fragment payload that can be used to yield an unchanging ICMP checksum is discussed later in the
section “Implementation of the Paxson/Shankar Model.”

Snort frag3 Preprocessor to the Rescue

The creator of Snort, Marty Roesch, has written an improved fragmentation preprocessor, frag3, that implements
target-based fragmentation policies by allowing a user to identify the fragmentation reassembly method that is
applied to a particular destination IP address or subnet. Assume that you have an entire subnet (10.4.10.x, for
example) that consists only of Microsoft Windows hosts and you want to configure Snort to use the appropriate
reassembly policy for these hosts. You need only enable the frag3 preprocessor in the configuration file and
designate the appropriate fragmentation policy in an frag3 engine statement as follows:

preprocessor frag3_global:

preprocessor frag3_engine: policy first, bind_to 10.4.10.0/24

This is fairly straightforward; the only unknown is the association of a fragmentation policy, in this case “first,”
with an operating system. The following table lists the fragmentation policies and associated platforms that Paxson
and Shankar discovered.

Fragmentation
Policy

Platforms

BSD-right HP JetDirect
BSD AIX 2, 4.3, 8.9.3, FreeBSD, HP-UX B.10.20, IRIX 4.0.5F, 6.2, 6.3, 6.4, NCD Thin

Clients, OpenBSD, OpenVMS, OS/2, OSF1, SunOS 4.1.4, Tru64 Unix V5.0A,V5.1,
Vax/VMS

Linux Linux 2.x
First HP-UX 11.00, MacOS (version unknown), SunOS 5.5.1,5.6,5.7,5.8, Windows

(95/98/NT4/ME/W2K/XP/2003)
Last Cisco IOS

Now any overlapping fragments that Snort sees destined for subnet 10.4.1.x are reassembled using the “first”
fragmentation policy, so that Snort reassembles fragments destined to those hosts in precisely the same way as the
Windows hosts themselves.

Let’s see exactly how this works on some actual traffic, using a Snort rule that looks for a Windows NETBIOS
exploit that can cause a buffer overflow.

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NETBIOS SMB
SMB_COM_TRANSACTION Max Parameter and Max Count of 0 DOS Attempt";
flow:to_server,established; content:"|00|"; depth:1; content:"|FF|SMB%";
depth:5; offset:4; content:"|00 00 00 00|"; depth:4; offset:43;)

Page8 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

The following tcpdump hexadecimal output shows an unfragmented attack packet that triggers the Snort rule. The
shaded hexadecimal characters indicate the TCP payload that contains the content that Snort evaluates. The bold,
underlined characters indicate the specific characters that the Snort rule examines.

08:59:38.543620 10.4.15.12.1115 > 10.4.10.28.139: P 1985349754:1985349853(99)
ack 1636263536 win 17241NBT Packet (DF)

0x0000 4500 008b 0db1 4000 8006 bf8c 0a04 0f0c

0x0010 0a04 0a1c 045b 008b 7656 087a 6187 6670

0x0020 5018 4359 33c9 0000 0000 005f ff53 4d42

0x0030 2500 0000 0000 0000 0000 0000 0000 0000

0x0040 0000 0000 0008 2404 0008 0000 0e13 0000

0x0050 0000 0000 0000 0000 0000 0000 0000 0013

0x0060 004c 0000 005f 0000 0020 005c 5049 5045

0x0070 5c4c 414e 4d41 4e00 6800 5772 4c65 6800

0x0080 4231 3342 577a 0001 00e0 ff

The six fragmented packets that follow represent an attacker’s attempt to use overlapping fragments with a “first”
reassembly policy. Only a host or an IDS capable of fragmentation reassembly based on the “first” policy can
reassemble these fragments to yield the packet seen above. Not coincidentally, in the packets below, partial or
entire fragment content that is discarded has an 8-byte value of 0xff ff ff ff ff ff ff ff.

Fragment 1

12:15:09.947614 10.4.15.12.1115 > 10.4.10.28.139: P 1985349754:1985349778(24)
ack 1636263536 win 17241 <eol>NBT Packet (frag 3505:48@0+)

0x0000 4500 0044 0db1 2000 8006 dfd3 0a04 0f0c

0x0010 0a04 0a1c 045b 008b 7656 087a 6187 6670

0x0020 6018 4359 23c5 0000 0000 0000 0000 005f

0x0030 ff53 4d42 2500 0000 0000 0000 0000 0000

0x0040 0000 0000

Fragment 2

12:15:09.948036 10.4.15.12 > 10.4.10.28: (frag 3505:16@56+)

0x0000 4500 0024 0db1 2007 8006 dfec 0a04 0f0c

0x0010 0a04 0a1c 0008 0000 0e13 0000 0000 0000

0x0020 0000 0000

Fragment 3

12:15:09.948412 10.4.15.12 > 10.4.10.28: (frag 3505:24@72+)

0x0000 4500 002c 0db1 2009 8006 dfe2 0a04 0f0c

0x0010 0a04 0a1c 0000 0000 0000 0013 004c 0000

Page9 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

0x0020 005f 0000 0020 005c 5049 5045

Fragment 4

12:15:09.948729 10.4.15.12 > 10.4.10.28: (frag 3505:32@32+)

0x0000 4500 0034 0db1 2004 8006 dfdf 0a04 0f0c

0x0010 0a04 0a1c ffff ffff ffff ffff ffff ffff

0x0020 ffff ffff 0000 0000 0008 2404 ffff ffff

0x0030 ffff ffff

Fragment 5

12:15:09.949156 10.4.15.12 > 10.4.10.28: (frag 3505:24@72+)

0x0000 4500 002c 0db1 2009 8006 dfe2 0a04 0f0c

0x0010 0a04 0a1c ffff ffff ffff ffff ffff ffff

0x0020 ffff ffff ffff ffff ffff ffff

Fragment 6

12:15:09.949540 10.4.15.12 > 10.4.10.28: (frag 3505:27@96)

0x0000 4500 002f 0db1 000c 8006 ffdc 0a04 0f0c

0x0010 0a04 0a1c 5c4c 414e 4d41 4e00 6800 5772

0x0020 4c65 6800 4231 3342 577a 0001 00e0 ff

According to the Paxson/Shankar model, a host using the “first” policy reassembles the packets using the following
scheme; the shaded numbers are the favored fragments:

111 22333

 4444 555666

111422333666

Translated, this means that the “first” policy uses all 24 bytes from Fragment 1, 8 bytes (offset 16-23) from
Fragment 4, all 16 bytes from Fragment 2, all 24 bytes from Fragment 3, and finally, all remaining bytes from
Fragment 6 for the reassembly process.

Fragment 1

0000 005f ff53 4d42 2500 0000 0000 0000 0000 0000 0000 0000

Fragment 4

0000 0000 0008 2404

Fragment 2

0008 0000 0e13 0000 0000 0000 0000 0000

Fragment 3

Page10 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

0000 0000 0000 0013 004c 0000 005f 0000 0020 005c 5049 5045

Fragment 6

5c4c 414e 4d41 4e00 6800 5772 4c65 6800 4231 3342 577a 0001 00e0 ff

Combine the above fragment payloads and you see that the reassembled payload is identical to the original baseline
unfragmented payload seen below.

08:59:38.543620 10.4.15.12.1115 > 10.4.10.28.139: P 1985349754:1985349853(99)
ack 1636263536 win 17241NBT Packet (DF)

0x0000 4500 008b 0db1 4000 8006 bf8c 0a04 0f0c

0x0010 0a04 0a1c 045b 008b 7656 087a 6187 6670

0x0020 5018 4359 33c9 0000 0000 005f ff53 4d42

0x0030 2500 0000 0000 0000 0000 0000 0000 0000

0x0040 0000 0000 0008 2404 0008 0000 0e13 0000

0x0050 0000 0000 0000 0000 0000 0000 0000 0013

0x0060 004c 0000 005f 0000 0020 005c 5049 5045

0x0070 5c4c 414e 4d41 4e00 6800 5772 4c65 6800

0x0080 4231 3342 577a 0001 00e0 ff

As demonstrated, this uniquely empowers Snort to handle attempted evasion tactics using overlapping fragments.

Page11 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

Implementation of the Paxson/Shankar Model

Implementation of the Paxson/Shankar model requires an API that can send and read network traffic. Available Perl
packages to accomplish this are Net::PcapUtils, Net::RawSock, and NetPacket. PcapUtils sniffs from an interface
and captures traffic, RawSock writes IP datagrams to the network, and NetPacket decodes captured IP datagrams
and encodes the same or modified datagrams to be passed to RawSock. You can use these packages to create an
ICMP echo request with the appropriate fragmentation and content, write them to the network, and listen for an
ICMP echo reply. Based on the reply, you can write additional Perl code to analyze the policy used for reassembly.

There are several technical challenges in implementing the model. First, a Linux 2.4 host running the kernel module
ip_conntrack (used in iptables) prevents outgoing packets from being fragmented. You must either remove or
disable this module or run an earlier version (Linux 2.2) to generate fragmented packets. Second, the most current
version of NetPacket, 0.04, has an error in the code in module IP.pm that does not properly format the IP header
fragment-related fields, MF flag and fragment offset, to create a fragmented packet. You must correct and
recompile the code to modify those fields. See Appendix E for the patch. Finally, as previously discussed, you
should generate a single set of fragments with an ICMP checksum that is the same regardless of the reassembly
policy, rather than generate five different sets of fragments with an ICMP checksum unique to each reassembly
policy.

One way to generate one set of fragments with the same ICMP checksum is to have each 8-byte chunk contain the
same data, but in a different order. By changing the order of the content, each fragment can have a unique payload
and be identified in the reassembly scheme. For the ICMP checksum to remain the same, you can change the
content by swapping 16-bit fields only. Here is a scheme used:

Figure 4 – Sample fragment payload for unchanging ICMP checksum

Fragment 1 8-byte content: 11223344

Fragment 2 8-byte content: 22113344

Fragment 3 8-byte content: 33112244

Fragment 4 8-byte content: 44112233

Fragment 5 8-byte content: 11332244

Fragment 6 8-byte content: 11442233

All contents are expressed in ASCII representation. Regardless of the fragmentation reassembly policy used, the
twelve 8-byte chunks of reassembled data always has the same ICMP checksum value assuming all other ICMP
fields (type, code, echo request ID, echo request sequence number) remain unchanged. As an example of a policy
response, a BSD reassembled ICMP echo reply has a payload depicted as follows:

Page12 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

Figure 5 – BSD policy reassembly for sample fragment payload

The ASCII content reflected in the ICMP echo reply is:

11223344 11223344 11223344 44112233 44112233 22113344 33112244 33112244
33112244 11442233 11442233 11442233

This is not the only encoding scheme that maintains an unchanging ICMP checksum; it is just a simple one that is
easily implemented.

As far as implementation details, you must generate a set of fragments using a first fragment that carries the
appropriate IP header fragmentation flags, an ICMP header representing an ICMP echo request, and fragment 1
payload. Fashion subsequent fragments by manipulating the IP header fragmentation fields and data payloads.
Remember that only the first fragment carries the protocol header followed by payload, while subsequent fragments
contain payload only. Also, the fragment offsets of payloads are relative to the protocol header. Because the
protocol header is an ICMP echo request, it has an 8-byte length and occupies fragment offset 0. All fragment
offsets are relative to the ICMP header.

All fragment offsets detailed below are values that are placed in the IP header field for fragment offsets and must be
multiplied by 8 to compute the true offset. For example, a fragment offset value of 1 in the IP header fragment
offset field indicates an actual fragment offset of 8. The technical explanation for representing offset values in the
IP header as an eighth of their real value is based on the number of bits allocated for the fragment offset in the IP
header. Thirteen bits are available for the fragment offset value, however, an IP datagram length is allocated 16
bits. Theoretically, though not often seen, a fragment offset can be greater than 213 or 8192. The multiplication
factor of 8 comes from 13 bits being 3 bits less than 16 bits (23 = 8).

The details of each fragment follow:

Fragment Fragment
Offset*

MF
Flag

ICMP Header ASCII Payload

1 0 1 Type = 08
Code = 00
Checksum – Applies to all
fields in ICMP header and
all fragment payloads
combined
ID (2 bytes) = any value
Seq (2 bytes) = any value

112233441122334411223344

2 4 1 2211334422113344

3 6 1 33112244331122443112244

4 1 1 44112233441122334411223344112233

5 6 1 113322441133224411332244

Page13 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

6 9 0 114422331144223311442233

*The above fragment offset values are relative to the end of the ICMP header.

Creating a More Generic Program to Implement the Model for all
Protocols

The implementation of fragmentation of an ICMP echo request payload for operating system identification provides
a good foundation for understanding not only patterns for reassembly identification, but also what is required to
fragment a TCP or UDP packet that contains real data. In fact, you can test your IDS/IPS with a program that uses
different policies to fragment traffic that your IDS/IPS normally flags or blocks. This shows you if your IDS/IPS is
susceptible to evasion by fragmentation. In their landmark paper, “Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection,” Ptacek and Newsham exposed the problems presented by fragmentation
overlap:

“Overlap resolution is further complicated by the fact that data from conflicting fragments is used
differently depending on their positions. In some situations, conflicts are resolved in favor of the new data.
In others, the old data is preferred and the new data is discarded. An IDS that does this incorrectly is
vulnerable to evasion attacks.”2

The discussion that follows explains the technical details required for a program to read a pcap file containing
attack traffic, fragment the payload(s), and write the fragments back to the network. The same API Perl packages
used in the implementation of the ICMP echo request fragments are necessary for this more generic program. You
can use the same PcapUtils to read the packets from the dump file as well as from the network interface.

Additional functionality required for this code is:

• The need to solicit user input for the fragmentation policy to be implemented

• The need to deal with protocol headers other than an ICMP echo request

• Preparation to write bogus traffic to the network where the destination IP address does not necessarily exist

There are new challenges presented by these additional requirements. First, the fragmentation model depends on
having the fragmented payload at a 0-offset relative to the end of the protocol header. This works with an 8-byte
ICMP header. Since fragments must fall on 8-byte boundaries (as implemented by the offset value in the IP
header), the end of the protocol header must fall on an 8-byte boundary. If not, the fragmentation scheme used gets
skewed by having fragments that may or may not be lumped with the protocol header itself.

For example, assume you have a TCP header that is 20 bytes long – standard for a TCP packet that has no TCP
options. In this case, there are 4 bytes of TCP header that must be lumped with the payload for it to fall on an 8-
byte boundary. However, the first fragment has 4 bytes of TCP header and 20 bytes of payload data instead of 24
bytes of payload data that is used in the model. To resolve this problem, you can pad the TCP header with a 4-byte
TCP EOL option. This is essentially a NOOP in the TCP options that does not change the packet or its
interpretation in any way other than to pad a TCP header to fall on an 8-byte boundary, if required. If you do this,
though, you must recompute the TCP checksum to include the new data. This problem is not present in UDP since
it has a standard 8-byte header. ICMP headers that do not fall on 8-byte boundaries have no easy fix. However,
there are few, if any, instances of ICMP packets being used in attacks (other than fragmentation attacks such as the
“ping of death”).

Page14 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

The RawSock program is not ideal for this application since it really does not create a “raw socket.” Instead, it
requires a MAC address for the destination IP of any packet that it writes. This is not a problem when the
destination host either is within the netmask of the sending host and alive, or is not within the netmask of the
sending host. In the former case, an ARP request is issued and an ARP reply is returned. In the latter case, the MAC
address of the router is used. However, if the destination host in the processed pcap record is within the netmask,
but is not alive, no packet is ever written. To avoid this problem, you must add bogus MAC addresses to the ARP
cache of the sending host for destination hosts that require them.

Another problem was exposed in the NetPacket encode code when a packet was sent that had an IP datagram length
of less than 46 bytes. If an IP datagram packet sent over Ethernet has a length of 46 bytes, it must be zero-padded to
be 46 bytes. When such a packet is decoded, the IP datagram length reflects the true length of the datagram.
However, when encoded by the program IP.pm, the length mistakenly includes the zero padding. For example, if a
TCP ACK packet contains a 20-byte IP header and 20-byte TCP header, it must be zero-padded to 46 bytes. The IP
total datagram length should be 40 bytes. But, when such a packet is encoded in the IP.pm code, the IP datagram
length is recomputed to be 46 bytes. This makes TCP think that it has 6 bytes of TCP data. The statement that
recomputes the IP header length has to be bypassed when rewriting unaltered or padded packets. Instead of using
the supplied IP.pm for encoding, the good code was placed in a local subroutine to avoid the problem.

A final consideration for this program is the need for filler bytes for fragment content that is overwritten. While the
ICMP echo request program simply writes the same set of fragments and analyzes the response for fragmentation
policy, it does not need to consider those replaced fragments or partial fragments. This new program takes payload
data and shapes it for a given fragmentation policy. In other words, it needs to take data from the pre-fragmented
payload only when a given fragment is used in the reassembly policy. If a fragment is overwritten in a given policy,
the fragment or partial fragment content must be populated with some kind of filler data. The filler data used in this
program is an 8-byte chunk of 0xFFFFFFFF. This can be readily identified in the packet fragment as filler and it is
very unlikely that true payload has this filler.

The following example shows how the payload must be fashioned per policy. The notation substr(payload, x, y)
indicates that the program should extract y bytes of payload beginning at offset x. If no y value is given, the
program should extract all remaining data from the payload. The variable $F represents the value 0xFFFFFFFF.

Frag
Payload

BSD BSD-right Linux First Last

1 substr(pay, 0, 24) substr(pay, 0, 8)
+ $F + $F

substr(pay, 0, 24) substr(pay, 0, 24) substr(pay, 0, 8) +
$F + $F

2 $F +
substr(pay, 40, 8)

substr(pay,32,16) $F +
substr(pay, 40, 8)

substr(pay,32,16) $F +
substr(pay, 40, 8)

3 substr(pay, 48, 24) $F + $F + $F $F + $F + $F substr(pay, 48, 24) $F + $F + $F

4 $F + $F +
substr(pay, 24, 16)

substr(pay, 8, 24)
+ $F

$F + $F +
substr(pay,24,16)

$F + $F +
substr(pay, 24, 8)
+ $F

substr(pay, 8, 32)

5 $F + $F + $F substr(pay,48,24) substr(pay,48,24) $F + $F + $F substr(pay,48,24)

6 substr(pay, 72) substr(pay, 72) substr(pay, 72) substr(pay, 72) substr(pay, 72)

The details of each fragment follow:

Page15 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

Fragment Fragment
Offset*

MF
Flag

Protocol Header Payload

1 0 1 Pertinent protocol header
values
Checksum – Applies to all
fields in protocol header
(and pseudo-header for TCP
and UDP) and all fragment
payloads combined

Policy (BSD, Linux, etc.) fragment 1

2 4 1 Policy (BSD, Linux, etc.) fragment 2

3 6 1 Policy (BSD, Linux, etc.) fragment 3

4 1 1 Policy (BSD, Linux, etc.) fragment 4

5 6 1 Policy (BSD, Linux, etc.) fragment 5

6 9 0 Policy (BSD, Linux, etc.) fragment 6

*The above fragment offset values are relative to the end of the protocol header.

Actual offset = (protocol header length/8) + fragment offset

According to the Paxon/Shankar model, you must find a minimum number of bytes of payload to fragment. While
94 bytes takes care of all fragments, fragment 6 is handled the same way for all models. A minimum number of 80
bytes is used to create at least some bytes of fragment 6. All packets, whether fragmented or not, should be read
from the pcap file and written to the network.

Summary

This paper discusses target-based fragmentation reassembly in theory and in application using the Snort frag3
preprocessor. It clarifies the terse explanation given for fragmentation evasion in the Paxson/Shankar paper. It also
demonstrates how fragments are reassembled by using a Snort rule with unfragmented and overlapping fragments.
Finally, it discusses several practical uses for implementing the model and code presented. Understanding this
theory can be particularly helpful.

First, it may help you identify remote operating systems through observation of the reassembly policy used by the
examined host. This is best implemented using the ICMP echo request with a unique payload that, when reflected
in the returned ICMP echo response, can determine the fragmentation reassembly policy. Use of other services or
protocols for fragmentation policy identification is impractical because few services or protocols simply echo back
what is sent. They may require additional input or authentication and may give no indication of the reassembly
employed. Successful identification of a specific reassembly policy can validate results of other active or passive
scanners.

Second, you can use this model to better understand how attackers can evade your IDS/IPS, and be more prepared
to mitigate threats. As Ptacek and Newsham noted, an intrusion detection system that is not aware of the
reassembly policy used by a destination host cannot possibly know how to perform the reassembly appropriately.

Page16 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

References

1 Thomas H. Ptacek and Timothy N. Newsham, ”Insertion, Evasion, and Denial of Service: Eluding Network
Intrusion Detection”, January 1998.

2 Umesh Shankar and Vern Paxson, “Active Mapping: Resisting NIDS Evasion Without Altering Traffic”,
2003.

Page17 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

Appendices

Appendix A - Perl packages used from search.cpan.org

NetPacket-0.04

Net-Pcap-0.03

Net-PcapUtils-0.01

Net-RawSock-1.0

Note: All source code is copyright of Sourcefire, Inc. and distributed under the GPL.

Appendix B - Fragmented ICMP echo request code

#!/usr/bin/perl

use Net::PcapUtils;
use Net::RawSock;
use NetPacket::IP;
use NetPacket::ICMP;

if ($#ARGV < 1) {
 print "Need to supply destination IP and source IP\n";
 exit;
 }

$dst = $ARGV[0];
$src = $ARGV[1];

$BSD = "111442333666";
$BSDr = "144422555666";
$linux = "111442555666";
$first = "111422333666";
$last = "144442555666";

if (($pid = fork()) < 0) {
 die "cannot fork, dying";
}
else {
 if ($pid == 0) {
 &sniff_reply;
 exit(0);
 }
}

sleep 2;
$all_pay =
"0000112233441122334411223344112233441122334411223344112233441122334411223344112233441122334411223344"
;

Page18 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

$off = 0;
$flgs = 1;
$payload = "0000112233441122334411223344";
$first_frag = 1;

&create_packet($off, $flgs, $payload,$first_frag);

$off = 40;
$flgs = 1;
$payload = "2211334422113344";
$first_frag = 0;

&create_packet($off, $flgs, $payload,$first_frag);

$off = 56;
$flgs = 1;
$payload = "331122443311224433112244";
$first_frag = 0;

&create_packet($off, $flgs, $payload,$first_frag);

$off = 16;
$flgs = 1;
$payload = "44112233441122334411223344112233";
$first_frag = 0;

&create_packet($off, $flgs, $payload,$first_frag);

$off = 56;
$flgs = 1;
$payload = "113322441133224411332244";
$first_frag = 0;

&create_packet($off, $flgs, $payload,$first_frag);

$off = 80;
$flgs = 0;
$payload = "114422331144223311442233";
$first_frag = 0;

&create_packet($off, $flgs, $payload,$first_frag);

sub create_packet {
 ## Create IP
 my $ip = NetPacket::IP->decode('');

 $off = $_[0];
 $flgs = $_[1];
 $pay = $_[2];
 $ff = $_[3];

 ## Init IP

 $ip->{ver} = 4;
 $ip->{hlen} = 5;

 $temp = $ip->{hlen} &0x0f;
 $ver_len = $temp | (($ip->{ver} << 4) & 0xf0);

 if ($ff) {
 $len = 24 + length($pay);
 }
 else {
 $len = 20 + length($pay);
 }

 $ip->{tos} = 0;
 $ip->{id} = 0x1d1d;

Page19 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

 $ip->{ttl} = 0x5a;
 $ip->{proto} = 1;
 $ip->{src_ip} = $src;
 $ip->{dst_ip} = $dst;

 $offset = $flgs << 13;
 $offset = $offset | (($off >> 3) & 0x1fff);
 $cksum = 0;

 $src_ip = gethostbyname($src);
 $dst_ip = gethostbyname($dst);

 $pack_ip = pack(c, $ver_len) . pack(c, $ip->{tos}) . pack(n, $len) .
 pack(n, $ip->{id}) . pack(n, $offset) . pack(c, $ip->{ttl}).
 pack(c, $ip->{proto}) . pack(n, $cksum) .
 pack(a4a4, $src_ip, $dst_ip);

 ## Create ICMP
 my $icmp = NetPacket::ICMP->decode('');

 ## Init ICMP
 $icmp->{type} = 8;
 $icmp->{code} = 0;
 $icmp->{data} = $pay;

 ## Assemble
 if ($ff) {
 $cksum = &checksum($icmp->{type}, $icmp->{code}, $all_pay);
 $icmp = pack("ccna*", $icmp->{type}, $icmp->{code}, $cksum, $all_pay);
 }
 else {
 $icmp = pack("a*", $pay);
 }

 $pkt = $pack_ip . $icmp;

 ## Write to network layer
 Net::RawSock::write_ip($pkt);
}

sub checksum {

 $type = $_[0];
 $code = $_[1];
 $data = $_[2];

Put the packet together for checksumming
 $zero = 0;

 $packet = pack("CCna*", $type, $code,
 $zero, $data);

 $csum = NetPacket::htons(NetPacket::in_cksum($packet));
 return($csum);
}

Load modules
use Net::PcapUtils;
use NetPacket::Ethernet qw(:strip);
use NetPacket::ICMP;
use NetPacket::IP qw(:strip);

sub sniff_reply {

Page20 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

Start sniffin in promisc mode
Net::PcapUtils::loop(\&sniffit,
 Promisc => 1,
 FILTER => 'icmp',
 SNAPLEN => 1500,
 DEV => 'eth0');
}

Callback
sub sniffit
{

 my ($args,$header,$packet,$i,$l) = @_;
 $ip = NetPacket::IP->decode(eth_strip($packet));
 $icmp = NetPacket::ICMP->decode($ip->{data});

 if ($icmp->{type} eq 0) {
 print "$ip->{src_ip} --> $ip->{dest_ip}:$icmp->{type}\n";
 $idata = substr($icmp->{data},4,$len);
 $idata = substr($icmp->{data},4);

 print "Actual ICMP response data is $idata\n";

 $idata = extract_response($idata);

 print "Manipulated ICMP response is $idata\n";

 if ($idata == $BSD) {
 print "Matched BSD\n";
 }
 else {
 if ($idata == $BSDr) {
 print "Matched BSDr\n";
 }
 else {
 if ($idata == $linux) {
 print "Matched Linux\n";
 }
 else {
 if ($idata == $first) {
 print "Matched First/Windows\n";
 }
 else {
 if ($idata == $last) {
 print "Matched Last\n";
 }
 else {
 print "Matched Nothing\n";
 }
 }
 }
 }
 }
 exit(0);
 }
}

sub extract_response {

 $icmp = $_[0];

 for ($i = 0; $i < 97; $i = $i+8) {
 $temp = substr($icmp,$i,1);
 if ($temp == 1) {
 if (substr($icmp, $i+2, 1) == 3) {
 $temp = 5;
 }
 else {
 if (substr($icmp, $i+2, 1) == 4) {

Page21 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

 $temp = 6;
 }
 }
 }
 $string = $string . $temp;
 }

 return($string);
}

Page22 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

Appendix C - Code to read a pcap file and fragment payload and write to
network

#!/usr/bin/perl

#--
#
This code reads a correctly formatted pcap file and fragments all records
that have a data payload of 80 bytes or more. The fragmentation is done
according to the policy that the user supplies in the command line:
bsd, bsdr, linux, first, last.
#
The fragmentation policies and paradigms used are from Vern Paxson's
paper on fragmentation and the different ways that various operating
systems reassemble a complicated fragment with overlapping
(entire, left, and/or right edges) fragments.
#
The model that he uses and employed in this code requires a minimum of
80 bytes of payload in a packet to account for all fragments.
#
The output created is written back on the wire. It can be captured
using tcpdump with appropriate arguments. The purpose of this program
is to be able to test Snort's frag3 preprocessor using actual exploits
and fragmented pcap files.
#
#
Judy Novak - Nov. 2004
#---

use Net::RawSock;
use Net::PcapUtils;
use NetPacket::Ethernet qw(:strip);
use NetPacket::IP qw(:strip);
use NetPacket::TCP;
use NetPacket::UDP;
use NetPacket::ICMP;

if ($#ARGV < 1) {
 print "\nNeed to supply the following parameters in this order:\n";
 print " 1) Fragmentation policy to use (bsd, bsdr, linux, first, last)\n";
 print " 2) Name of the pcap file\n\n";
 exit;
}

my($ip, $tcp, $udp, $icmp, $protohdr_len, $pkt, $ip_proto, $incount, $outcount);

$incount = 0;
$outcount = 0;

$policy = $ARGV[0];
$dump_file = $ARGV[1];

if ($policy ne "bsd" and $policy ne "bsdr" and $policy ne "linux" and $policy ne "last" and $policy ne
"first") {
 print "Invalid fragmentation policy.\n";
 print "Must be: bsd, bsdr, linux, first, last.\n";
 exit;
}

$min_frag_length = 80;
$frag_flag = 0;

ARP entries can be a problem for the RawSock routine since it

Page23 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

seems to require a MAC address for any destination IP that falls
in the current netmask. It sends packets just fine if the
destination IP address MAC address is in the current ARP cache or
the destination IP is outside of the netmask. Just in case a
destination IP address belongs to a host in the netmask that is
not currently up, a bogus ARP entry is assigned. These are deleted
after all records have been read/written. However, they may hang
around as "incomplete" in when doing "arp -a". Eventually, they
time out.

$mac_n = 0;
$mac_beg = "aa:bb:cc:dd:ee:";
$fake_arp;

&arp_cache;

Open and read the user-supplied pcap file.

$pcap_t = Net::Pcap::open_offline($dump_file, \$err);

if (!defined($pcap_t)) {
 die("Net::Pcap::open_offline of $dump_file returned error $err");
}

&read_pkts;

if ($frag_flag == 0) {
 print "No packets found in file $dump_file that were at least $min_frag_length long - no fragments
generated.\n";
}

print "Number of packets read in is $incount\n";
print "Number of packets written out is $outcount\n";

if ($outcount < $incount) {
 print "Number of records written out less than read in.\n";
 print "There may be a problem with the input file or heaven forbid - this program\n";
}

If any bogus arp entries have been made, delete entries

if ($mac_n > 0) {
 &arp_del_entries;
}

sub read_pkts {

Net::Pcap::loop($pcap_t, -1, \&process_pkt, "");

}

Process the packets read from the user-supplied pcap file
Decode the packet's IP header and determine the protocol
found in the packet (tcp, udp, or icmp). Decode the protocol
and determine if the data payload is the minimum length in
order to fragment it according to Paxson's model. If it is
not long enough, write it back to the network unchanged.
Otherwise, send it to the fragmentation process.

NetPacket supplies an IP encode routine along with the IP
decode routine. However, there is a bug when it recomputes
the IP datagram length when a packet is received, decoded,
and encoded if the length is less than 46 bytes. The original
packet has the correct datagram length, but if there is zero
padding because the minimum length of an IP datagram over
Ethernet is 46, the encoding miscalculates the datagram length
and includes the padding. My routine leaves the header length,
but for some reason, the padding is no longer included in the
packet. This should not affect generating a pcap for use with

Page24 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

Snort, but this datagram may have problems being sent to an
actual destination. This is not the anticipated use for this
program.

sub process_pkt
{

 my ($args,$header,$packet,$i,$l) = @_;
 $incount++;
 $ip = NetPacket::IP->decode(eth_strip($packet));

 &arp_entry($ip->{src_ip});
 &arp_entry($ip->{dest_ip});

 if ($ip->{proto} == 6) {
 $ip_proto = "tcp";
 $tcp = NetPacket::TCP->decode($ip->{data});
 $len = length($tcp->{data});
 if ($len <= $min_frag_length) {
 $ip_pkt = &encode_IP;
 $outcount++;
 Net::RawSock::write_ip($ip_pkt);
 }
 else {
 $frag_flag = 1;
 $outcount++;
 &frag_it;
 }
 }
 else {
 if ($ip->{proto} == 17) {
 $ip_proto = "udp";
 $udp = NetPacket::UDP->decode($ip->{data});
 $len = length($udp->{data});
 if ($len <= $min_frag_length) {
 $ip_pkt = &encode_IP;
 $outcount++;
 Net::RawSock::write_ip($ip_pkt);
 }
 else {
 $frag_flag = 1;
 $outcount++;
 &frag_it;
 }
 }
 else {
 if ($ip->{proto} == 1) {
 $ip_proto = "icmp";
 $icmp = NetPacket::ICMP->decode($ip->{data});
 $len = length($icmp->{data});
 if ($len <= $min_frag_length) {
 $ip_pkt = &encode_IP;
 $outcount++;
 Net::RawSock::write_ip($ip_pkt);
 }
 else {
 $frag_flag = 1;
 $outcount++;
 &frag_it;
 }
 }
 else {
 print "Unsupported IP protocol found in packet $ip->{proto}.\n";
 }
 }
 }
}

Page25 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

Fragment the packet.

sub frag_it {

Need to compute the length of the protocol header so that accurate fragment
offsets can be used later.

Also, TCP can possibly present a problem since the header length may
not be evenly divisible by 8 (the size of a fragment). This messes
up the generic (for all protocols) fragment overlap calculations. The
solution to this is to add a 4-byte EOL (essentially a NOP) TCP option
at the end of the TCP header to pad the TCP header and make the length
evenly divisible by 8. This requires recalculating the TCP checksum
since the original packet TCP checksum will no longer be valid with
the addition of the TCP option.

 if ($ip->{proto} == 17) {
 $protohdr_len = 8;
 $all_pay = $udp->{data};
 }
 else {
 if ($ip->{proto} == 6) {
 $protohdr_len = $tcp->{hlen} * 4;
 if (($protohdr_len % 8) == 4) {
 $protohdr_len = $protohdr_len + 4;
 $tcp->{hlen} = $tcp->{hlen} + 1;
 $tcp->{options} = $tcp->{options} . "\x00\x00\x00\x00";
 }
 $all_pay = $tcp->{data};
 }
 else {
 if ($ip->{proto} == 1) {
 $protohdr_len = $ip->{len} - ($ip->{hlen} * 4) - length($icmp->{data});
 if ($icmp->{type} == 8) {
 $protohdr_len = $protohdr_len + 4;
 $all_pay = substr($icmp->{data}, 4);
 }
 else {
 $all_pay = $icmp->{data};
 }
 }
 }
 }

Set a "filler" fragment that is used for fragment content when a totally
overlapped/replaced fragment is required in the payload. While actual
payload content can be used, this is content is a more distinct placeholder.

 $F = "\xff\xff\xff\xff\xff\xff\xff\xff";

Each policy must fragment the payload according to Paxson's model. This
requires extracting the correct number of bytes from the correct offset
in the payload and using filler fragments where they are replaced.

 if ($policy eq "bsd") {
 $payload1 = substr($all_pay, 0, 24);
 $payload2 = $F . substr($all_pay, 40, 8);
 $payload3 = substr($all_pay, 48, 24);
 $payload4 = $F . $F . substr($all_pay, 24, 16);
 $payload5 = $F . $F . $F;
 $payload6 = substr($all_pay, 72);
 }
 else {
 if ($policy eq "bsdr") {
 $payload1 = substr($all_pay, 0, 8) . $F . $F;
 $payload2 = substr($all_pay, 32, 16);
 $payload3 = $F . $F . $F;
 $payload4 = substr($all_pay, 8, 24) . $F;
 $payload5 = substr($all_pay, 48, 24);

Page26 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

 $payload6 = substr($all_pay, 72);
 }
 else {
 if ($policy eq "linux") {
 $payload1 = substr($all_pay, 0, 24);
 $payload2 = $F . substr($all_pay, 40, 8);
 $payload3 = $F . $F . $F;
 $payload4 = $F . $F . substr($all_pay, 24, 16);
 $payload5 = substr($all_pay, 48, 24);
 $payload6 = substr($all_pay, 72);
 }
 else {
 if ($policy eq "first") {
 $payload1 = substr($all_pay, 0, 24);
 $payload2 = substr($all_pay, 32, 16);
 $payload3 = substr($all_pay, 48, 24);
 $payload4 = $F . $F . substr($all_pay, 24, 8) . $F;
 $payload5 = $F . $F . $F;
 $payload6 = substr($all_pay, 72);
 }
 else {
 if ($policy eq "last") {
 $payload1 = substr($all_pay, 0, 8) . $F . $F;
 $payload2 = $F . substr($all_pay, 40, 8);
 $payload3 = $F . $F . $F;
 $payload4 = substr($all_pay, 8, 32);
 $payload5 = substr($all_pay, 48, 24);
 $payload6 = substr($all_pay, 72);
 }
 }
 }
 }
 }

Create the 6 sets of fragments in Paxson's model with the
appropriate fragment offset, MF flag, and determine whether
or not this is the first fragment.

Create fragment 1

 $off = 0;
 $flgs = 1;
 $first_frag = 1;

 &create_packet($off, $flgs, $payload1, $first_frag);

Create fragment 2

 $off = $protohdr_len + 32;
 $flgs = 1;
 $first_frag = 0;

 &create_packet($off, $flgs, $payload2, $first_frag);

Create fragment 3

 $off = $protohdr_len + 48;
 $flgs = 1;
 $first_frag = 0;

 &create_packet($off, $flgs, $payload3, $first_frag);

Create fragment 4

 $off = $protohdr_len + 8;
 $flgs = 1;
 $first_frag = 0;

 &create_packet($off, $flgs, $payload4, $first_frag);

Page27 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

Create fragment 5

 $off = $protohdr_len + 48;
 $flgs = 1;
 $first_frag = 0;

 &create_packet($off, $flgs, $payload5, $first_frag);

Create fragment 6

 $off = $protohdr_len + 72;
 $flgs = 0;
 $first_frag = 0;

 &create_packet($off, $flgs, $payload6, $first_frag);
}

sub create_packet {

 $off = $_[0];
 $flgs = $_[1];
 $pay = $_[2];
 $ff = $_[3];

Create IP

Format the IP header. Code take from NetPacket, but wanted
more control than NetPacket offered - especially since it
had errors in the code the created the fragmentation flags in
IP header.

 $temp = $ip->{hlen} & 0x0f;
 $ver_len = $temp | (($ip->{ver} << 4) & 0xf0);

The IP datagram length for the first fragment will include the
payload header length as well as the IP header and payload lengths.
Subsequent fragments do not have a protocol header - just data.

 if ($ff) {
 $len = $ip->{hlen} * 4 + $protohdr_len + length($pay);
 }
 else {
 $len = $ip->{hlen} * 4 + length($pay);
 }

 $offset = $flgs << 13;
 $offset = $offset | (($off >> 3) & 0x1fff);
 $cksum = 0;
 $src_ip = gethostbyname($ip->{src_ip});
 $dest_ip = gethostbyname($ip->{dest_ip});

 $pack_ip = pack(c,$ver_len) . pack(c,$ip->{tos}) . pack(n,$len) . pack(n,$ip->{id}) . pack(n,
$offset) .
 pack(c,$ip->{ttl}) . pack(c,$ip->{proto}) . pack(n, $cksum) .
 pack(a4a4, $src_ip, $dest_ip);

 if (($ip->{hlen} > 5) and ($ip->{options} ne "")) {
 $pack_ip = $pack_ip . pack('a*', $ip->{options});
 }

 ## Create protocol part of packets

 ## Create UDP

 if ($ip_proto eq "udp") {

 if ($ff) {
 $len = length($all_pay) + 8;

Page28 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

 $pack_udp = pack("nnnna*", $udp->{src_port}, $udp->{dest_port},
 $len, $udp->{cksum}, $pay);
 }
 else {
 $pack_udp = pack("a*", $pay);
 }

 my $pkt = $pack_ip . $pack_udp;
 Net::RawSock::write_ip($pkt);
 }
 else {
 ## Create TCP

 if ($ip_proto eq "tcp") {

 if ($ff) {
 $len = length($all_pay) + $protohdr_len;

 $tmp = $tcp->{hlen} << 12;
 $tmp = $tmp | (0x0f00 & ($tcp->{reserved} << 8));
 $tmp = $tmp | (0x00ff & $tcp->{flags});

 $cksum = &tcp_checksum;

 $pack_tcp = pack('nnNNnnnna*a*',
 $tcp->{src_port}, $tcp->{dest_port}, $tcp->{seqnum},
 $tcp->{acknum}, $tmp, $tcp->{winsize}, $cksum,
 $tcp->{urg}, $tcp->{options}, $pay);
 }
 else {
 $pack_tcp = pack("a*", $pay);
 }
 my $pkt = $pack_ip . $pack_tcp;
 Net::RawSock::write_ip($pkt);
 }
 else {
 ## Create ICMP

 if ($ip_proto eq "icmp") {

 if ($ff) {
 $len = length($all_pay) + $protohdr_len;
 if ($icmp->{type} != 8) {
 $icmp = pack("ccna*", $icmp->{type}, $icmp->{code}, $icmp->{cksum}, $pay);
 }
 else {
 $type8_hdr = substr($icmp->{data}, 0, 4);
 $pay = $type8_hdr . $pay;
 $icmp = pack("ccna*", $icmp->{type}, $icmp->{code}, $icmp->{cksum}, $pay);
 }
 }
 else {
 $icmp = pack("a*", $pay);
 }
 my $pkt = $pack_ip . $icmp;
 Net::RawSock::write_ip($pkt);
 }
 }
 }
}

sub tcp_checksum {

 $zero = 0;
 $proto = 6;
 $tcplen = ($tcp->{hlen} * 4) + length($tcp->{data});

 $tmp = $tcp->{hlen} << 12;

Page29 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

 $tmp = $tmp | (0x0f00 & ($tcp->{reserved} << 8));
 $tmp = $tmp | (0x00ff & $tcp->{flags});

 # Pack pseudo-header for tcp checksum

 $src_ip = gethostbyname($ip->{src_ip});
 $dest_ip = gethostbyname($ip->{dest_ip});

 $packet = pack('a4a4nnnnNNnnnna*a*',
 $src_ip, $dest_ip, $proto, $tcplen,
 $tcp->{src_port}, $tcp->{dest_port}, $tcp->{seqnum},
 $tcp->{acknum}, $tmp, $tcp->{winsize}, $zero,
 $tcp->{urg}, $tcp->{options}, $tcp->{data});

 $cksum = NetPacket::htons(NetPacket::in_cksum($packet));
 return($cksum);
}

sub encode_IP {

 # create a zero variable
 $zero = 0;

 # adjust the length of the packet
 # Next statement commented out because it hoses the length
 # when padding for 46 byte minimum limit

$self->{len} = ($self->{hlen} * 4) + length($self->{data});

 $tmp = $ip->{hlen} & 0x0f;
 $tmp = $tmp | (($ip->{ver} << 4) & 0xf0);

 $offset = $ip->{flags} << 13;
 $offset = $offset | (($ip->{foffset} >> 3) & 0x1fff);

 # convert the src and dst ip
 $src_ip = gethostbyname($ip->{src_ip});
 $dest_ip = gethostbyname($ip->{dest_ip});

 # construct header to calculate the checksum
 $hdr = pack('CCnnnCCna4a4a*', $tmp, $ip->{tos},$ip->{len},
 $ip->{id}, $offset, $ip->{ttl}, $ip->{proto},
 $zero, $src_ip, $dest_ip, $ip->{options});

 $ip->{cksum} = NetPacket::htons(NetPacket::in_cksum($hdr));

 # make the entire packet
 $packet = pack('CCnnnCCna4a4a*a*', $tmp, $ip->{tos}, $ip->{len},
 $ip->{id}, $offset, $ip->{ttl}, $ip->{proto},
 $ip->{cksum}, $src_ip, $dest_ip, $ip->{options},
 $ip->{data});

 return($packet);

}

sub arp_cache {

 $n = 0;

 open(ARP, "arp -an|");

 while($arp = <ARP>) {
 chop($arp);
 @arp_rec = split(" ",$arp);
 $pos = index($arp_rec[3], ":");
 if ($pos > -1) {
 $arp_rec[1] =~ s/\(//;
 $arp_rec[1] =~ s/\)//;

Page30 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

 $IP[$n] = $arp_rec[1];
 $n++;
 }
 }
}

sub arp_entry {

 $search_IP = $_[0];
 $max = $#IP;

 for ($i = 0; $i <= $max; $i++) {
 if ($IP[$i] eq $search_IP){
 return;
 }
 }

 for ($i = 0; $i < $mac_n; $i++) {
 if ($fake_arp[$i] eq $search_IP){
 return;
 }
 }

 if (length($mac_n) >= 2) {
 $mac = $mac_beg . $mac_n;
 }
 else {
 $mac = $mac_beg . "0" . $mac_n;
 }
 $fake_arp[$mac_n] = $search_IP;
 $cmd =`arp -s $search_IP $mac temp`;
 $mac_n++;
}

sub arp_del_entries {

 for ($i = 0; $i < $mac_n; $i++) {
 $cmd = `arp -d $fake_arp[$i]`;
 }
}

Page31 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

Appendix D – Sample output from tcpdump from ICMP echo request/reply
with BSD policy

13:21:58.646304 10.4.11.45 > 10.4.12.16: icmp: echo request (frag 7453:32@0+)
0x0000 4500 0034 1d1d 2000 5a01 f867 0a04 0b2d E..4....Z..g...-
0x0010 0a04 0c10 0800 161e 3030 3030 3131 323200001122
0x0020 3333 3434 3131 3232 3333 3434 3131 3232 3344112233441122
0x0030 3333 3434 3344

13:21:58.649060 10.4.11.45 > 10.4.12.16: (frag 7453:16@40+)
0x0000 4500 0024 1d1d 2005 5a01 f872 0a04 0b2d E..$....Z..r...-
0x0010 0a04 0c10 3232 3131 3333 3434 3232 3131221133442211
0x0020 3333 3434 3344

13:21:58.650301 10.4.11.45 > 10.4.12.16: (frag 7453:24@56+)
0x0000 4500 002c 1d1d 2007 5a01 f868 0a04 0b2d E..,....Z..h...-
0x0010 0a04 0c10 3333 3131 3232 3434 3333 3131331122443311
0x0020 3232 3434 3333 3131 3232 3434 224433112244

13:21:58.651765 10.4.11.45 > 10.4.12.16: (frag 7453:32@16+)
0x0000 4500 0034 1d1d 2002 5a01 f865 0a04 0b2d E..4....Z..e...-
0x0010 0a04 0c10 3434 3131 3232 3333 3434 3131441122334411
0x0020 3232 3333 3434 3131 3232 3333 3434 3131 2233441122334411
0x0030 3232 3333 2233

13:21:58.652644 10.4.11.45 > 10.4.12.16: (frag 7453:24@56+)
0x0000 4500 002c 1d1d 2007 5a01 f868 0a04 0b2d E..,....Z..h...-
0x0010 0a04 0c10 3131 3333 3232 3434 3131 3333113322441133
0x0020 3232 3434 3131 3333 3232 3434 224411332244

13:21:58.653737 10.4.11.45 > 10.4.12.16: (frag 7453:24@80)
0x0000 4500 002c 1d1d 000a 5a01 1866 0a04 0b2d E..,....Z..f...-
0x0010 0a04 0c10 3131 3434 3232 3333 3131 3434114422331144
0x0020 3232 3333 3131 3434 3232 3333 223311442233

13:21:58.654003 10.4.12.16 > 10.4.11.45: icmp: echo reply
0x0000 4500 007c 7182 0000 4001 ddba 0a04 0c10 E..|q...@.......
0x0010 0a04 0b2d 0000 1e1e 3030 3030 3131 3232 ...-....00001122
0x0020 3333 3434 3131 3232 3333 3434 3131 3232 3344112233441122
0x0030 3333 3434 3434 3131 3232 3333 3434 3131 3344441122334411
0x0040 3232 3333 3232 3131 3333 3434 3333 3131 2233221133443311
0x0050 3232 3434 3333 3131 3232 3434 3333 3131 2244331122443311
0x0060 3232 3434 3131 3434 3232 3333 3131 3434 2244114422331144
0x0070 3232 3333 3131 3434 3232 3333 223311442233

Page32 of 32 Sourcefire, Inc. All rights reserved. January 21, 2005

Target-based Fragmentation Reassembly

Appendix E - Patch to IP.pm to write calculated fragment flags and offset
bytes

--- IP.pm 2003-05-21 09:16:40.000000000 -0400
+++ IP.good.pm 2004-11-30 14:15:16.000000000 -0500
@@ -217,14 +217,14 @@

 # construct header to calculate the checksum
 $hdr = pack('CCnnnCCna4a4a*', $tmp, $self->{tos},$self->{len},
- $self->{id}, $self->{offset}, $self->{ttl}, $self->{proto},
+ $self->{id}, $offset, $self->{ttl}, $self->{proto},
 $zero, $src_ip, $dest_ip, $self->{options});

 $self->{cksum} = NetPacket::htons(NetPacket::in_cksum($hdr));

 # make the entire packet
 $packet = pack('CCnnnCCna4a4a*a*', $tmp, $self->{tos},$self->{len},
- $self->{id}, $self->{foffset}, $self->{ttl}, $self->{proto},
+ $self->{id}, $offset, $self->{ttl}, $self->{proto},
 $self->{cksum}, $src_ip, $dest_ip, $self->{options},
 $self->{data});

