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Optimizing Pattern Matching for Intrusion Detection 
 

Marc Norton  
 

Abstract – This paper presents an optimized version of 
the Aho-Corasick [1] algorithm.  This design represents 
a significant enhancement to the author’s original 
implementation released in 2002 as part of an update to 
the Snort Intrusion Detection System. The enhanced 
design uses an optimized vector implementation of the 
Aho-Corasick state table that significantly improves 
performance.  A memory efficient variant uses sparse 
matrix storage to reduce memory requirements and 
further improve performance on large pattern groups.   

Intrusion Detection Systems are very 
specialized applications that require real-time pattern 
matching capabilities at very high network speeds, and 
in hostile environments.  Several of the major issues 
that must be considered in pattern matching and 
Intrusion Detection are discussed to establish a 
framework for the use of the Aho-Corasick algorithm 
as implemented in the Snort Intrusion Detection 
System.  

The performance results comparing the 
original, optimized, and sparse storage versions of the 
authors Aho-Corasick algorithm are presented.  Tests 
were conducted using several dictionary tests and a 
Snort based Intrusion Detection performance test. The 
impact of pattern group sizes and compiler selection on 
performance is also demonstrated using several 
popular compilers. 
 
Index Terms – pattern matching, Aho-Corasick, 
Intrusion Detection, IDS, Snort 
 

I. INTRODUCTION 
 

NORT  is an open source Intrusion Detection System  
that relies heavily on the Aho-Corasick multi-pattern 

search engine.   The performance characteristics of the 
Aho-Corasick algorithm implemented in Snort have a 
significant impact on the overall performance of Snort. 
Snort scans network traffic packets searching for intruders 
by looking for specific values in the network headers and 
by performing a search for known patterns in the 
application layer data. 

Snort has utilized a high-speed multi-pattern 
search engine since the release of version 2.0 in 2002.   
The introduction of a multi-pattern search engine in Snort 
was part of a larger enhancement to the detection engine to 
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improve performance, allow for larger rule sets, and 
achieve gigabit network performance levels [2].    

The Sourcefire Intrusion Detection System uses 
Snort and has been tested and certified via the OSEC [19] 
test program to perform at 750 Mbits/sec in the OSEC test 
environment.  Although Snort has been shown to perform 
well in gigabit network environments in the lab and at 
customer sites the quest for better performance and deeper 
inspection capabilities persists.  

This paper presents an optimized Aho-Corasick 
implementation that improves on the design of the state 
table found in the author’s original version.  It is faster 
than the previous version, supports an optimized full 
matrix state table, and a memory efficient state table using 
a sparse matrix based storage method to minimize memory 
requirements.  

Many other methods have been proposed for 
managing the storage and access of sparse state tables.  
Johnson [20] and Yao [21] detail table-compression using 
multiple vectors.  Regular expression based search engines 
such as Yacc and Lex use variants of these methods.  
There are also hashing, trie, tree, and bitmap [10] methods.  
All of these methods attempt to provide an optimal 
minimum memory representation of the sparse state table, 
but usually with a measurable loss of performance 
compared to full matrix representations. 

This paper presents some basic sparse matrix and 
vector storage formats and applies one to the Aho-
Corasick state table.  These particular methods of sparse 
storage, while not new, do not appear to have been used 
before to represent the Aho-Corasick state table. This may 
be due in part to the fact that these methods do not provide 
optimal solutions to minimizing memory. The storage 
savings is also pattern dependent and may provide no 
savings at all.  Sparse storage does however offer 
significant storage savings for the pattern groups used by 
Snort to detect network attackers.   

The selected sparse storage method requires only 
minor changes to the optimized algorithm, offers better 
performance than the author’s original version, and is 
faster than the optimized version on large pattern groups in 
the dictionary tests. 

The full matrix version is 1.5 to 2.5 times faster 
than the original version and the sparse matrix version is 
1.2 to 1.7 times faster, depending on compiler, pattern 
group size, search frequency, and search text size.   
 

S 
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II. PATTERN MATCHING AND INTRUSION DETECTION 
 

The pattern search problem in Intrusion Detection 
Systems is a specialized problem in it’s own right.  It 
requires consideration of many issues associated with 
pattern searches. The following considerations should be 
accommodated by any pattern search engine used for real-
time Intrusion Detection. 

 
a) Multi-pattern search algorithms. 
b) Pattern character case sensitivity. 
c) Pattern sizes.  
d) Pattern group size. 
e) Alphabet size. 
f) Algorithmic attacks. 
g) Search text size. 
h) Frequency of searches. 
 
These design issues are dis cussed below to 

establish a framework for pattern matching in Intrusion 
Detection Systems and the enhancements provided by the 
Aho-Corasick search engine in this paper.     

 
a) The real-time nature of inspecting network packets 
requires the use of a pattern search engine that can keep up 
with the speeds of modern networks.   There are two types 
of data we use in this type of search, the patterns and the 
search text.  The patterns are pre-defined and static. This 
allows them to be pre-processed into the best from suitable 
for any given pattern match algorithm.  The search text is 
dynamically changing as each network packet is received.  
This prohibits us from pre-processing the search text prior 
to performing the pattern search.   This type of pattern 
search problem is defined as a Serial pattern search [6].  
The Aho-Corasick algorithm is a classic serial search 
algorithm, and was first introduced in 1975 [1].   Many 
variations have been inspired by this algorithm, and more 
recently Intrusion Detection Systems  have generated a 
renewed interest in the algorithm due to some of its’ 
unique properties. 
  
b) Intrusion Detection Systems search for patterns that can 
be either case sensitive or case insensitive. The Aho-
Corasick algorithm as originally described is a case 
sensitive pattern search engine.  This version of the Aho-
Corasick algorithm supports case sensitive and case 
insensitive patterns. This is accomplished by converting all 
patterns to upper case prior to insertion in the state 
machine, and than converting each character of the search 
stream to upper case for comparison as the stream is 
processed.  This effectively produces a case independent 
search and guarantees no patterns are missed.   If a pattern 
match is found and it is case sensitive, it is re -tested 
against the exact search text characters in a case sensitive 
manner to verify the match. 
 

c) The size of the patterns used in a search can 
significantly affect the performance characteristics of the 
search algorithm.   State machine based algorithms such as 
the Aho-Corasick algorithm are not affected by the size of 
the smallest or largest pattern in a group.  Skip based 
methods such as the Wu-Manber algorithm and others that 
utilize character skipping features are very sensitive to the 
size of the smallest pattern. The ability to skip portions of 
a search text can greatly accelerate the search engines 
performance. However, skip distance is limited by the 
smallest pattern. Search patterns in Intrusion Detection 
represent portions of known attack patterns and can vary in 
size from 1 to 30 or more characters but are usually small.     
 
d) The pattern group size usually affect IDS performance 
because the IDS pattern search problem usually benefits 
from processor memory caching.  Small pattern groups can 
fit within the cache and benefit most form a high 
performance cache. As pattern groups grow larger, less of 
the pattern group fits in the cache, and there are more 
cache misses  which reduces performance.  Most search 
algorithms will perform faster with 10 patterns than they 
do with 1000 patterns, for instance. The performance 
degradation of each algorithm as pattern group size 
increases varies from algorithm to algorithm.  It is 
desirable that this degradation be sub-linear in order to 
maintain scalability.   The Aho-Corasick algorithm 
generally provides good scalability for the pattern groups 
used in Intrusion Detection, and as demonstrated in the test 
data shown below. 
 
e) The alphabet size used in current Intrusion Detection 
Systems is defined by the size of a byte.  An 8-bit byte 
value is in the range 0 to 255, providing Intrusion 
Detection Systems with a 256-character alphabet.  These 
byte values represent the ASCII and control characters 
seen on standard computer keyboards and other non-
printable values.  For instance, the letter ‘A’ has a byte 
value of 65.  Extremely large alphabets such as Unicode 
can be represented using pairs of byte values, so the 
alphabet the pattern search engine deals with is still 256 
characters.  This is a large alphabet by pattern matching 
standards.  The English dictionary alphabet is 52 
characters for upper and lower case characters, and DNA 
research uses a four character alphabet in gene sequencing.  
The size of the alphabet has a significant impact on which 
search algorithms are the most efficient and the quickest.  
Navarro [4] covers this topic and presents charts showing 
the best choice of search algorithms based on the alphabet 
size and minimum patterns sizes with data for patterns of 
five bytes or more. This paper extends that that pattern 
range to include pattern matching issues relevant to large 
alphabets and small pattern sizes of less than five 
characters.   
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f) Algorithmic attacks attempt to use the properties and 
behaviors of a search algorithm against itself to reduce the 
algorithm’s performance.  The performance behavior of an 
algorithm should be evaluated by considering it’s average-
case and worst-case performance. Algorithms that exhibit 
significantly different worst-case and average-case 
performance are susceptible to these attacks.  Skip based 
algorithms , such as the Wu-Manber algorithm [3], utilize a 
character skipping feature similar to the bad character shift 
in the Boyer-Moore algorithm.  Skip based algorithms are 
sensitive to the size of the smallest pattern since they can 
be shown to be limited to skip sizes smaller than the 
smallest pattern.  A pattern group with a single byte pattern 
cannot skip over even one character or it might not find the 
single byte pattern.   

The performance characteristics of the Wu-
Manber algorithm can be attacked, as shown by Tuck et al. 
[10], and significantly reduced by malicious network 
traffic resulting in a Denial of Service attack.  This type of 
attack requires degenerate traffic of small repeated 
patterns. This problem does not exist for text searches 
where algorithmic attacks are not intentional and are 
usually very rare. It is a significant issue in Intrusion 
Detection Systems where algorithmic attacks are prevalent 
and intentional. The Wu-Manber algorithm does not 
achieve its best performance levels in Snort because Snort 
rules often include very small search patterns of one to 
three characters, eliminating most of the opportunities to 
skip sequences of characters.  In practice, Snort exhibits 
little differences in performance between the Wu-Manber 
and the author’s original Aho-Corasick algorithm in the 
average-case, but Wu-Manber can be significantly slower 
in algorithmically designed attack traffic. 

The strength of skip-based algorithms is evident 
when all of the patterns in a group are large, they can skip 
many characters at a time and are among the fastest 
average-case search algorithms available.    

The Aho-Corasick algorithm is unaffected by 
small patterns, and its’ worst-case and average-case 
performance are the same.  This makes it a very robust 
algorithm for Intrusion Detection. 

  
g) The size of a search text in Intrusion Detection Systems 
is usually less than a few thousand bytes.   In general when 
searching a text, the expense of setting up the search and 
filling the cache with the necessary search pattern 
information is usually fixed.  If the search is performed 
over just a few bytes, than spreading the setup costs over 
those few byte results in a high cost per byte.  Whereas , if 
the search text is very large spreading the setup cost over 
the larger search text results in very little overhead cost 
added to searching each byte of text. 
 
h) The frequency of searching in an Intrusion Detection 
System is dependent on the network bandwidth, the 
volume of traffic on the network, and the size of the 

network packets.  This implies that the frequency of text 
searches and the size of each search text are related due to 
the nature of the network traffic being searched.  Again, as 
with search text size, a high frequency of searching in an 
Intrusion Detection System will cause the search setup 
costs to be significant compared to doing fewer larger text 
searches. 

 
III. THE AHO-CORASICK STATE MACHINE 

 
The Aho-Corasick state machine is a specialized 

finite state machine.  A finite state machine is a 
representation of all of the possible states of a system, 
along with information about the acceptable state 
transitions of the system.  The processing action of a state 
machine is to start in an initial state, accept an input event, 
and move the current state to the next correct state based 
on the input event.  It is easy to visualize a state machine 
as a matrix where the rows represent states and the 
columns represent events. The matrix elements provide the 
next correct state to move to based on the input event and 
possibly some specific action to be done or information to 
be processed when the state is entered or exited.  

A simple example may clarify the state transition 
process. If the current state is state 10 and the next input 
event is event 6, than to perform a state transition you 
would find the matrix element at row 10 and column 6 in 
the matrix and change the current state to the state 
indicated by the value of this matrix element.  

The Aho-Corasick state machine as implemented 
in Snort uses a Deterministic Finite Automata also called a 
DFA.  A unique property of a DFA is that upon examining 
an input character in the text stream it requires exactly one 
transition of the state machine to find the correct next state.  
This is in contrast to a Non-Deterministic Finite Automata, 
also called a NFA, which can require more than one state 
transition to find the correct next state.  A DFA can 
process data faster than an NFA since it requires fewer 
transition steps.  Aho-Corasick [1] indicates that an NFA 
can require up to 2 times the transitions of the DFA to 
search a stream of data. The construction and structure of 
the state table matrix of a DFA is also more complicated 
than that of a NFA.  Aho-Corasick [1] also shows how a 
DFA can be constructed from an NFA by pre-processing 
all of the possible state transitions in the NFA until it can 
be determined how to perform all state transitions in a 
single step.  This procedure has the tendency to fill in more 
elements of the state table matrix.  The physical 
representation of the Aho-Corasick state transition table 
varies from one implementation to the next.  The choice of 
the state table representation determines the memory and 
performance tradeoffs of the search algorithm.   
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IV. SPARSE STORAGE FORMATS   
 
 Sparse matrices and vectors contain a significant 
number of zero elements and only a few non-zero 
elements.  Methods and storage formats used for operating 
on sparse structures efficiently are well developed in the 
field of Linear Algebra and utilized in many branches of 
science.  There are many books and publicly available 
codes for operating on sparse matrices and structures.  The 
structures of most interest to this paper are those 
representing sparse vectors.  It is not sufficient to store 
sparse data efficiently.  The storage format must also allow 
for fast random access to the data. 
 A sample sparse matrix is shown in figure 1 
containing six rows and four columns.   
  
 0 0 0 3   
 0 4 0 1   
 0 0 0 6   
 1 0 0 0   
 0 2 0 0   
 0 0 5 0   
 
 Figure 1 
  
This matrix is a general rectangular matrix with only a few 
non-zero elements.   Using the Compressed Row Storage 
CSR format [14] it can be stored as shown in figure 2. 

 
CSR Matrix Format 

 
Value : 3 4 1 6 1 2 5 
Column  : 4 2 4 4 1 2 3 
Row : 1 2 4 5 6 7 

 
 Figure 2 
 
This format requires three vectors to hold only the non-
zero entries.  They are a value vector, a column vector and 
a row vector.   The Column array indicates the column the 
corresponding value in the Value array belongs to in the 
matrix.  The Row index indicates the index in the Column 
and Value arrays where each row starts.  There are seven 
entries in each of the value and column vectors, since there 
are seven non-zero entries in the matrix.   There are six 
row entries, since there are six rows in the matrix.  For 
instance, the third Row entry indicates the third row starts 
at the fourth entry in the Column and Value arrays.  This is 
one of the simplest sparse storage schemes for a matrix 
and can be broken down to handle vectors by considering a 
single row to be a vector as shown Figure 3.  We will call 
this the compressed sparse vector format. 
 

Compressed Sparse Vector Format 
 
Vector: 0 0 0 2 4 0 0 0 6 0 7 0 0 0 0 0 0 0 0 0 

 Values: 2  4  6  7 
 Index: 4  5  9 11 
 
 Figure 3 
 
The Index array indicates the vector array index of the 
corresponding Value.  There are four non-zero values, 
hence we have four entries in the Index and Value arrays. 
We can merge our Value and Index arrays together into 
one integer array as shown in Figure 4.  We will call this 
the sparse-row format. 
  

Sparse-Row Format   
 

Sparse-Row Storage: 8 4 2 5 4 9 7  11 7  
 
 Figure 4 
 
Here we have nine entries, the first is the total number of 
words that follows, followed by eight numbers 
representing four pairs of numbers in index-value order.  
Now we have a single array of nine entries, eight in index-
value order.  This could also be represented as an array of 
four C language structures each having an Index and a 
Value entry.  In either case, we only need an array of the 
non-zero entries, and we need to track how many entries 
we keep.  This storage scheme works well at minimizing 
the total storage of a sparse vector and works well in 
applications where we have to sequentially touch every 
element of the vector, such as in matrix-vector multiplies.   
However, for randomly looking up an individual entry this 
format requires us to search through the array to find the 
correct index.   

Another representation of the vector in Figure 3 
uses the banded nature of the vector to store the elements 
efficiently and allows us to maintain random access to its 
elements. We call this the banded-row format, and it is 
shown in Figure 5. 
 
 Banded-Row Format 
 

Num Items:  8 
Start Index:  4  
Values:  2 4 0 0 0 6 0 7  
Band Array:  8 4 2 4 0 0 0 6 0 7 

 
 Figure 5 
 
The Banded-Row format stores elements from the first 
non-zero value to the last non-zero value, the number of 
terms stored is known as the bandwidth of the vector.  
Small bandwidth corresponds to large storage savings. To 
manage access to the data we only need to track the 
number of data elements and the starting index of the data.  
This format reduces the storage requirements, and still 
provides fast random access to the data.   Many problems 
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express themselves as banded matrices, in which case the 
banded-row format can be used for each row in the matrix.   
This type of banded storage makes no requirements of how 
the banded-ness of one row will correspond to banded-ness 
in another row.   

The literature on storing and operating on Sparse  
Matrices and Banded Matrices are quite extensive.   We 
have only scratched the surface of sparse matrix 
technology but it will suffice to improve the Aho-Corasick 
state table storage requirements. 

 
V. THE OPTIMIZED AHO-CORASICK 

 
 The optimized Aho-Corasick is a refinement of 
the author’s original version released in Snort in 2002.  
The state table is managed somewhat differently and this 
allows the search routine to be compiled to a more optimal 
instruction mix.  Previously each entry in the state table 
had a vector of transitions for the state, a failure pointer for 
the NFA version of the table, and a list of matching 
patterns for the state, all contained in one structure.  The 
previous state table is now broken into a state transition 
table, an array of per state matching pattern lists, and a 
separate failure pointer list for each state for the NFA.   

The state transition table is a list of pointers to 
state vectors.  Each state vector represents the valid state 
transitions for that state.  Additionally, each vector also 
includes a small header that indicates the storage format of 
the row, and a Boolean flag indicating if any pattern 
matches occur in this state.  The state transition data 
follows the header.  Another change to the code was to 
convert each input character to uppercase as it is processed 
in the search.  Previously the entire input text was 
converted prior to the search.  Together these changes are 
shown in the tests below to significantly improve the 
performance of the previous algorithm.     
 The search routine is  a small piece of code that 
essentially jumps from state to state based on the input 
characters in the text stream.  A state machine operates by 
maintaining a current state, accepting an input event (a 
character in our case), and using a table or matrix to 
lookup the correct next allowed state based on the current 
state and input event as follows: 
 
while ( input = next -input ) 
{ 
    state = state-transition-table[ state, input ]  
    if( patterns matched in this state ) process  patterns…. 
} 

It would appear that there is not a lot of 
opportunity for optimizing such a simple state machine.  
Yet optimizing this functionality of this state machine for 
both maximum speed and minimum storage has been the 
basis of extensive research for many years.   

The code below shows the basic algorithm for the 
search used by the optimized Aho-Corasick algorithm.   

 
for ( state = 0; T < Tend; T++ ) 
{ 
      ps        = NextState[  state  ];  
      sindex = xlatcase[  T[0]  ]; 
      if(  ps[1]  )  
      {    
           for( mlist  = MatchList[state]; 
                  mlist != NULL; 
                  mlist  = mlist->next ) 
            { 
          /* process the pattern match */ 
            } 
      } 
      state = ps[  2u + sindex  ];  
  } 
 The NextState array is the array of pointers to the 
row vectors of the state table.  The ‘ps’ variable is used to 
point to the current state’s transition vector. The first two 
words of the ‘ps’ array are the storage format and the 
boolean match flag.  The ‘T’ parameter is the text being 
searched, and ‘xlatcase’ converts the text one byte at a 
time to upper case for a case independent search.  Once a 
match is found the pattern is processed.     

A check is made using ps[1] to determine if any 
patterns are matched in the current state, if not the state 
machine cycles to the next state. If there is a match all of 
the patterns that match in the current state are processed in 
the ‘for’ loop.   

All of the compilers tested produced significantly 
faster code with this version than they did with the original 
version.   
 

VI. THE SPARSE STORAGE AHO-CORASICK 
 
The sparse storage format used in this version is 

the banded-row format previously described.  The vectors 
of the state transition table are somewhat different for the 
banded-row format. The first word indicates the storage 
format and the second word indicates if any patterns match 
in this state as in the optimized full vector version.  The 
third word indicates the number of terms that are stored for 
the row, and the fourth word indicates the index of the first 
term.  The banded-row format allows us to directly index 
into the entry we wish to access. However, we must be 
careful now to do a bounds check prior to each indexing 
operation.    
 
for ( state = 0; T < Tend; T++ ) 
{ 
     ps        = NextState[ state ];  
     sindex = xlatcase[  T[0]  ];  
      if(   ps[1]   )  
      {    
           for( mlist  = MatchList[ state ];  

    mlist != NULL; 



  6  

    mlist  = mlist->next ) 
           { 

/* process the pattern match */ 
            } 
       }    
       /* Bounds check  & state transition */ 
       if(        sindex <     ps[3]               )  state = 0;  
       else if( sindex >= (ps[3] + ps[2]) )  state = 0;  
       else    state = ps[  4u + sindex - ps[3]  ]; 
 } 
 The bounds check is likely to reduce performance 
compared to the optimized version.  Testing below 
presents a somewhat different picture and shows that with 
large pattern groups this algorithm out performs the 
optimized version. 
 

VII. PERFORMANCE METRICS 
 

The performance metrics for evaluating a multi-
pattern search engine will be broken into three categories; 
algorithmic, computational, and problem domain metrics.   

Algorithmic or theoretical metrics are based on 
consideration of the algorithm independent of the hardware 
or software.  Worst-case behavior is an example of an 
algorithmic metric. Typically, the worst-case performance 
of a multi-pattern search engine is proportional to the size 
of the patterns and the length of the data being searched.   
The Aho-Corasick algorithm implemented by the author is 
an O(n) algorithm, indicating the search speed is 
proportional to n, the length of the data being searched.   

Computational metrics are based on examining 
how an algorithm interacts with the computer hardware it 
runs on.  The significant metrics we will consider are 
instruction mix, caching properties and pattern group size, 
and the search text length. 

The instruction mix refers to the type of hardware 
instructions required by the algorithm.  A sophisticated 
instruction mix might be indicative of algorithms that 
require special purpose machine instructions or hardware 
to work efficiently.  This Aho-Corasick algorithm has no 
special instruction mix requirements and can run well on 
most general-purpose computers.  

The caching properties of an algorithm can 
significantly affect performance.  The strongest indicators 
of caching performance are cache size and data locality.   
Data locality can be defined by the relative amount of 
sequential versus random memory access the algorithm 
performs in and out of the cache.  The Aho-Corasick 
algorithm jumps from state to state in the state table.  
These jumps are data driven, and are essentially random.  
If only a small part of the state table can fit in the 
computer’s cache, there are likely to be many cache 
misses, and a cache miss may cost 10 times that of a cache 
hit.   Therefore, the performance of the Aho-Corasick 
algorithm is very sensitive to the size of the cache, and 
whether the state table can fit in the cache.  Ideally, the 

cache should be large enough to hold the entire state table 
and have room left to bring the search data into the cache 
as needed.  This only happens for small state tables, or on 
systems with very large caches.   The state table size is 
proportional to the total number of characters in all of the 
patterns included in the search. 

The last issue we’ll consider in measuring pattern 
matching performance is the problem domain of the 
search.   The particular problem we apply a pattern 
matcher to defines the size of the search text, the number 
of patterns, and the frequency of searches.  The problem 
domain that Snort is used in requires searching network 
traffic for known attack patterns.  The pattern group sizes 
used in the Snort IDS are up to a thousand or more 
patterns.  Snort searches network packets that average 600-
800 bytes in each search, and Snort does this up to 200,000 
times a second.  In between pattern searches, other 
operations occur in Snort that potentially flush the cache.  
Each time a pattern search is started, the cache has to be 
reloaded which can represent a noticeable setup cost for 
each search.    In direct contrast to this type of search is the 
sequential search of a very large data stream.  This type of 
search allows the higher performance cached data accesses 
to greatly accelerate the overall search performance.  The 
dictionary test below demonstrates this behavior.   
   

VIII. TEST RESULTS 
 

The test results for the new Aho-Corasick 
implementation includes benchmark data for the standard 
Aho-Corasick previously used in Snort, the new optimized 
version using full matrix storage, and the optimized 
version using banded-row storage.   

The testing was divided into two types of pattern 
search tests.  Dictionary tests are often used to demonstrate 
the relative merits of pattern search engines.  The 
dictionary test selected was used to provide a long stream 
of text to search providing the software an opportunity to 
achieve the best possible caching performance.  A network 
traffic capture file was also used and demonstrates the 
relative performance of all three versions of the Aho-
Corasick algorithm as implemented in Snort.   

 
Dictionary Test 

The dictionary test selected 1000 patterns from 
throughout an online King-James bible. These patterns 
were used in groups of 10 to 1000 to search through the 
1903 Webster’s unabridged dictionary, about 2.3 
megabytes of data. This ensured that there were plenty of 
successful pattern matches, causing the test to provide 
complete coverage of the search routine by executing both 
byte testing and matching pattern code. 

The three versions of the Aho-Corasick algorithm 
tested included the standard version already in use in 
Snort, which treats the state table as a full matrix, the new 
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optimized version again using full matrix storage, and the 
new optimized version using banded-row storage. 

A test bed was developed that included several 
different compiled versions of each of the Aho-Corasick 
routines to be tested.  The compilers used include 
Microsoft VC 6.0, Intel C 6.0, and the Cygwin gcc 3.3.1 
compiler.  Using three different compilers provided 
broader insight into the performance and caching behavior 
of  the search algorithm and storage methods .      

All results are for the DFA version of the Aho-
Corasick algorithm.   The exact results for the dictionary 
tests are shown in Charts 1, 2 and 3, results normalized 
against the standard Aho-Corasick algorithm are shown in 
Charts 4, 5, and 6.  These tests were conducted using 16 bit 
state values on a Dell 8100 1.7 GHz system with 1 G-bytes 
of RAM. 
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Chart 1 
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Chart 2 
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Chart 3 
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Chart 4 
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Chart 5 
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Chart 6 

 
The optimized versions perform significantly 

better than the standard version in the dictionary tests with 
all three compilers.   Comparing the compiler results in 
Charts 1, 2, and 3 shows the Intel compiler ranked best in 
raw performance.  The gcc compiler performed better than 
the VC60 compiler with the standard Aho-Corasick, but 
the VC60 compiler performed better than the gcc compiler 
with both the optimized and banded Aho-Corasick.   

All three compilers produced similar performance 
trends.  We see at least a 1.4 times speed improvement of 
the optimized version over the standard version, except for 
Microsoft where we see as much as a 2.5 times 
improvement on smaller pattern groups.  The optimized 
banded-row storage version also produces a significant 
speedup.  In fact, it performed the best on the largest 
pattern group.  All three compilers show the optimized full 
matrix version to be faster than the banded-row version for 
all pattern group sizes up to 500 patterns.  At 1000 
patterns, the banded-row version outperforms the 
optimized full matrix version for all three compilers. 

The storage requirements for the different pattern 
group sizes are shown in Chart 7, with the tabular results 
shown in Table 1 for brevity.  These results reflect a 16 bit 
state size. 

Patterns vs  Kbytes 
 

 AC STD AC OPT AC BAND 
10 58 30 3 
25 182 93 9 
50 370 188 19 

100 729 371 41 
300 2333 1160 130 
500 3884 1930 239 
1000 7567 3760 527 

 
Table 1 
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Chart 7 

The optimized version uses one-half the memory of the 
standard version, due to its use of a 16-bit word size for 
state values.  The banded-row storage uses about one-
fifteenth the storage of the standard version, and about 
one-seventh the storage of the optimized full matrix 
version.  
 
State Size Tests 

The optimized and banded Aho-Corasick can use 
either 16-bit state or 32-bit state values.  The 16-bit state 
values are limited to 2^16 or 65K states.  The 32-bit state 
values are limited to 2^32 or 4 billion states.   The merit of 
using 16-bit states is reduced memory consumption.  
Charts 8, 9, and 10 compare the performance of the 16-bit 
(AC OPT) and the 32-bit (AC OPT 32) optimized Aho-
Corasick for the three compilers.  Charts 11-13 compare 
the performance of the 16-bit (AC BANDED) and the 32-
bit (AC BANDED 32) banded-row Aho-Corasick for the 
three compilers.   
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Chart 9 
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Chart 13 

 
There are only minor differences between the 16 

and 32 bit versions of both the optimized and banded 
versions of the algorithm.  The VC60 compiler 
demonstrates the largest difference across all pattern sizes 
and favors the 32 bit state size. 

 
Snort Test 

Snort processes packets on standard Ethernet 
based networks that are up to 1460 bytes of data per 
packet.  This type of data tests search performance and 
search setup costs on smaller search texts, and in a 
relatively cache unfriendly environment.  The tests were 
performed by replaying previously captured traffic directly 
into Snort.   The compiler used was the Intel C 6.0 
compiler on Linux.  The test file selected represents about 
2 G-bytes of web centric traffic.  It was selected since 
Snort allows us to select how much of the traffic is 
inspected in each web request.  The test works as follows; 
Snort was configured to inspect the first 300 bytes of each 
web page request. This is typically how Snort might be 
configured.  The Unix time command was used and the file 
was processed as usual, noting the user processing time. 
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Snort then was configured to inspect each of the web pages 
completely as requested from the server.  Once again, 
Snort was run and the user processing time was noted.  
The difference in times represents the pure pattern 
matching time required to pattern match the extra data.  
This test did not measure absolute performance. It does 
show the relative performance differences of each search 
engine in processing the additional data. 

This test was run with each version of the Aho-
Corasick algorithm and the Wu-Manber algorithm.  The 
Wu-Manber algorithm in Snort is generally a very fast 
algorithm on average, but does not have a good worst-case 
scenario.  It is included here to show the relative merits of 
its good average case performance compared to the Aho-
Corasick algorithms.  

The time differences, computed speed, and 
performance increase over the standard Aho-Corasick is 
shown in table 2 and chart 14.  These tests used a 16 bit 
state size, were run on a system with dual 2.4 GHz Xeon 
cpus, and 2 G-bytes of RAM. 

 
Snort Web Test 

 
 Time 

Diff 
Speed 

Increase 
Performance 

 Increase  
Memory 
M-bytes  

AC_STD 12.4 0% 0%  56 
AC_OPT 8.5 31%  46% 28 
AC_BAND 10.3 17% 20% 14 
Wu-Manber 12.1 2% 2% 26 

 
Table2 

Snort Web Test
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Chart 14 

 The optimized and banded Aho-Corasick 
algorithms are significantly faster than the standard Aho-
Corasick and the Wu-Manber algorithm.  The web rules in 
Snort contain many small two byte patterns.  This prevents 
the Wu-Manber algorithm from benefiting from a bad 
character shift strategy.   

The optimized algorithm is 31 percent (8.5/12.4) 
faster, this means the engine can perform 46 percent 
(12.4/8.5) more pattern matching in the same time, and 

requires one-half the memory of original algorithm.  The 
banded algorithm is 17 percent faster and yields a 20 
percent performance gain, and uses about one-fourth of the 
memory of the standard Aho-Corasick algorithm. 
 

IX. SUMMARY  
 

The Aho-Corasick search algorithm has been 
studied extensively since its inception in 1975.  Intrusion 
Detection Systems operate in a real-time domain where 
searches are serial, patterns are often very small, pattern 
group sizes are often over a thousand patterns, searches 
occur up to 200,000 times a second, and attackers exploit 
the worst-case properties of these algorithms.  

The Aho-Corasick algorithm when implemented 
using a DFA provides a strong basis for dealing with 
Intrusion Detection pattern searches.  The enhancements 
made in this paper are designed to maintain the best 
properties of the Aho-Corasick algorithm and improve its 
performance.  

  Sparse storage using banded-rows was 
introduced to reduce cache misses and improve 
performance.  This storage format requires a bounds check 
for each state transition, this adds a fixed cost test.  As 
pattern groups grow larger the fixed cost of bounds 
checking is mitigated by better caching behavior as shown 
in the dictionary tests and the Snort test. 

The tests used demonstrate that there are 
significant differences in the quality of the machine code 
generated by different compilers for the same source code.  
In spite of advances in modern code optimizers, an 
algorithm’s performance is still very dependent on the 
developer crafting source code to best match the 
hardware’s processing characteristics.    

Dictionary testing shows the optimized Aho-
Corasick implementation is 1.5 to 2.5 times faster than the 
current version, depending on the compiler selected and 
pattern group size.   Storage was reduced by as much as 93 
percent. These tests results show that the optimized sparse 
storage version demonstrates better performance for large 
pattern groups than the optimized full matrix version.   

Snort testing shows the optimized version is 31 
percent faster, yielding 46 percent more pattern matching 
capacity, and uses one-half the memory of the author’s 
original version.  The optimized sparse storage version is 
17 percent faster than the original, yielding 20 percent 
more pattern matching capacity, and uses less than one-
fourth the memory of the original version.  

This paper has presented an updated version of 
the author’s original Aho-Corasick algorithm and 
demonstrated that it provides a significant improvement in 
pattern matching performance when used with an Intrusion 
Detection System, and in general dictionary testing. 

 The optimized Aho-Corasick source code can be 
found in the Snort source code at www.snort.org or along 
with this paper at www.idsresearch.org. 
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