
Inline Snort multiprocessing with PF_RING 

 
Author(s): Livio Ricciulli, Timothy Covel 

 

Published: September, 2011 

              

 

Introduction 
We have modified PF_RING to work with inline Snort while still supporting the current passive 

multiprocessing functionality. PF_RING load balances the traffic to analyze by hashing the IP headers in 

multiple buckets. This allows it to spawn multiple instances of Snort, each processing a single bucket, 

and achieve higher throughput through multiprocessing. In order to take full advantage of this, you need 

a multicore processor (like an I7 with 8 processing threads). This should also work well with dual or quad 

processor boards to increase parallelism even further. 

 

What this means is that you can build a really cheap IPS using standard, off-the-shelf hardware.  

 

If you have any questions or issues, please contact us at support@metaflows.com 

 

Equipment Used 
Intel(R) Core(TM) i7 CPU 950  @ 3.07GHz, Dual Intel e1000e, 4 Gig RAM 

PF_RING e1000e driver, transparent_mode=1 

Operating System: Linux (CentOS preferred) 

 

Snort 2.9.0.x using the 6765 Emerging Threats Pro Rules 

 
 

ET-Pro Percentage Packet Forwarded 

Bandwidth 1 Core 2 Cores 4 Cores 6 Cores 8 Cores 

100 100% 100% 100% 100% 100% 



200 67.00% 100% 100% 100% 100% 

400 35.00% 64.00% 96.5% 100% 100% 

600 26.00% 48.00% 89.00% 96.6% 98.9% 

917 17.00% 36.00% 73.00% 82.00% 91.00% 

 

As the graph above illustrates, inline with 1 core can only sustain 100 Mbit/s or less (that’s what people 

get today). With Pfring inline we parallelize the inline processing on up to 8 cores thus achieving almost 

700 Mbit/s sustained with ET-Pro rules with approximately 200 microseconds latency. 

 

Snort 2.9.0.x using the 5267 VRT Rules 

 
 

This graph again illustrates that using Pfring inline to parallelize the inline processing increases 

performance with the VRT rules as well. 

  

VRT Percentage Packet Forwarded 

Bandwidth 1 Core 2 Cores 4 Cores 6 Cores 8 Cores 

50 98.30% 100% 100% 100% 100% 

100 85.00% 98.30% 100% 100% 100% 

200 60.00% 88.00% 96.2% 100% 100% 

500 39.00% 62.00% 77.00% 88.00% 96.10% 

700 30.00% 53.00% 66.00% 79.00% 91.70% 

917 19.00% 43.00% 60.00% 74.00% 89.00% 

 

 

Please note: performance numbers are greatly affected by the type and number of Snort rules used and 

the type of traffic being sent through. 

 

 

Installation Instructions 



 
Install the following packages 

libdnet-1.12 

kernel-devel 

libtool 

subversion 

automake 

make 

autoconf 

pcre-devel 

libpcap-devel 

flex 

bison 

byacc 

gcc 

zlib-devel 

gcc-c++ 

 

#Build the PF_RING inline libraries and kernel module: 

 

#download our modified PF_RING source http://www.metaflows.com/pfring/PF_RING.tgz 

 

tar xvfz PF_RING.tgz 
cd  PF_RING; make clean 
cd kernel; 
make clean; make; make install 
cd ../userland/lib; 
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/ lib; 
export LIBS='-L/usr/local/lib'; 
./configure; 
make clean; make; make install 
cd ../libpcap; 
export LIBS='-L/usr/local/lib -lpfring -lpthread'; 
./configure; 
make clean; make; make install; 
make clean; make; make install-shared 
ln -s /usr/local/lib/libpfring.so /usr/lib/libpfrin g.so 
 
#Build the daq-0.6.2 libraries: 

#downlaod daq-0.6.2 http://www.snort.org/dl/snort-current/daq-0.5.tar.gz 

 

tar xvfz daq-0.6.2.tgz 
cd daq-0.6.2; 
chmod 755 configure; 
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/ lib; 
export LIBS="-L/usr/local/lib -lpcap -lpthread" 
./configure --disable-nfq-module --disable-ipq-modu le \ 
--with-libpcap-includes=/usr/local/include \ 
--with-libpcap-libraries=/usr/local/lib \ 



--with-libpfring-includes=/usr/local/include/ \ 
--with-libpfring-libraries=/usr/local/lib 
make clean; make; make install 
 

#Go back to the PF_RING directory and build the daq interface module 

 

cd  PF_RING/userland/snort/pfring-daq-module; 
autoreconf -ivf; 
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/ lib 
export LIBS='-L/usr/local/lib -lpcap -lpfring -lpth read'; 
./configure; make; make install 
 

# Build Snort 2.9.x # 

cd snort-2.9.x; 
make clean ; 
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/ lib; 
export LIBS='-L/usr/local/lib -lpfring -lpthread' 
./configure --with-libpcap-includes=/usr/local/incl udes \ 
--with-libpcap-libraries=/usr/local/lib \ 
--with-libpfring-includes=/usr/local/include/ \ 
--with-libpfring-libraries=/usr/local/lib \ 
--enable-zlib --enable-perfprofiling 
make 
make install 
 

# Load PF_RING MODULE 

####### ATTENTION ######### 

#The OS will try to load the PF_RING kernel module with default 

#parameters anytime any application with PF_RING runs 

#The default parameters are wrong when running inline 

#****Never run inline with tx_capture**** 

#Therefore is always a good idea to remove pf_ring.ko and reload it with 

#the correct parameter before running inline 

 

rmmod pf_ring.ko 
insmod pf_ring.ko enable_tx_capture=0 
 
# Run Snort     

# Run as many instances as your system can handle limited only to value of \ 

#CLUSTER_LEN in PF_RING/kernel/linux/pf_ring.h at compile time (and your memory) 

#Remember to replace the interfaces with ones appropriate for your instance. 

 

ifconfig eth0 up 
ifconfig eth1 up 
snort -c snort.serv.conf -A console -y -i eth0:eth1  \ 
--daq-dir /usr/local/lib/daq --daq pfring --daq-var  clusterid=10 \ 
--daq-mode inline -Q 
 



#If you want even faster performance (about 20% more) and you have one of the Ethernet interfaces in 

#PF_RING/drivers, you can run in transparent mode 1. We have only extensively tested the e1000e 

#driver and we know it is very reliable. 

#To use transparent mode 1 with an e1000e interface: 

 

cd PF_RING/drivers/intel/e1000e/e1000e-1.3.10a/src;  
make clean; 
make; 
make install 
 

#Now you need to replace the e1000e module by either 

#rebooting or removing the old one and reloading the new driver in 

#/lib/modules/`uname -r`/kernel/drivers/net/e1000e/ 

#You also need to reload the pf_ring.ko  module to enable transparent mode 1 

#also increasing the buffer size to handle spikes in throughput 

 

rmmod pf_ring.ko 
insmod pf_ring.ko enable_tx_capture=0 transparent_m ode=1 
min_num_slots=16384 
 

#If you have any issues, you can contact us at support@metaflows.com or visit the Metaflows Google 

#group for support http://groups.google.com/group/metaflows 


