
Performance Rules Creation

Part 2: Rules Options and Techniques

22

What madness today?

Learn by reviewing actual VRT published rules

Highlight potential issues with certain rule
options

Break down some common rule constructs

• Buffer overflow detection

• Protocol decoding

Abuse a VRT team member with the “replace”
functionality

33

What is a DQOH?

Matthew Olney
(irc nick: dqoh)

VRT Security Analyst for 2 years

Primary Responsibilities:
• Snort rules generation

• QA for SEU and VRT rules feed

• Agent of Karma

Past life:

• Network and Security Engineer
• Cisco

• Snort

• Open source security products

VRT Rule Examples

55

Strap In, the Bus is Leaving

This topic could be a multi-day course (and, in some
cases it is)

So I’m assuming:

• You’ve seen rules and know generally how they are laid out

• You can reference the Snort Users Manual for general rules
question (I’ll cite sections as appropriate)

And I’m providing:
• Non-obvious information on rules options

• Usage cases from real snort rules

• Information on rules options as they occur

Don’t Panic

66

Example 1: Content based buffer
overflow checks

alert tcp $EXTERNAL_NET any -> $HOME_NET
4000 (msg:"EXPLOIT Alt-N SecurityGateway
username buffer overflow attempt"; flow:established,
to_server; content:"username="; nocase;
isdataat:450,relative; content:!"&"; within:450;
content:!"|0A|"; within:450; metadata:policy balanced-
ips drop, policy connectivity-ips drop, policy security-
ips drop; reference:url,secunia.com/advisories/30497/;
classtype:attempted-admin; sid:13916; rev:2;)

77

Bus Stop: Content Option

Content can be modified as non-relative:

• Content:”A”; depth: 3; offset: 2;

• Move 2 bytes into the payload and look for “A” within the next 3 bytes.

Content can be modified as relative:
• Relative matches are made from the DOE pointer (Usually the end of the

previous match)

• Content:”A”; Content: “B”; distance: 4; within: 5;

• Find “A”. Then move 4 bytes from the end of “A” and find “B” within the next
5 bytes.

Content can be negative (that is alert if this isn’t seen):
• Content:!”A”; depth: 3; offset: 2;

Content can be made case insensitive using the nocase;
modifier.

Check out sections 3.5.1 – 3.5.7 in the Snort Users Manual for more
information.

88

Bus Stop: DOE & relative content example

Relative contents use the DOE pointer

• Content:”ABC”;

• Places DOE after C

• Content: “X”; distance: 2; within: 5;

• Moves the pointer 2 bytes (First black arrow)

• Looks at the next 5 bytes for an “X” (Orange arrow)

• Places the DOE pointer after the X (red arrow)

A B C X X 00 03 X Y Z

Second content matchAfter first content match

Final DOE location

99

Example 1: Buffer Overflow Detection (sid: 13916)

(flow:established, to_server; content:"username="; nocase;
isdataat:450,relative; content:!"&"; within:450; content:!"|0A|";
within:450;)

flow: established, to_server;
• Used to reduce false positives and improve performance.

• Flow is fairly straight forward, but check out Section 3.6.9 for full
details

content:”username=“;
• Has the “nocase” modification to allow for any type of match

• pattern can be anywhere in the payload.

This pattern match will be the anchor for the rest of
our detection

1010

Example 1: Isdataat usage…

(flow:established, to_server; content:"username="; nocase;
isdataat:450,relative; content:!"&"; within:450; content:!"|0A|";
within:450;)

For content:!””; checks involving buffer overflows, we need to
make sure the data is there to be checked.

• Negative content matches look for the absence of data, so even if
we run out of data, we still are successful

• isdataat: verifies that there is data within the specified distance.

• The check can be relative or non-relative

Format is: isdataat:<int>[,relative];
• Check out section 3.5.12 for more information on isdataat:

isdataat: 450, relative;
• The anchor (username=) is not at a fixed location, so we must make the size

check relative to this match

• Relative keywords makes the 450 byte check from the DOE.

1111

Example 1, continued

(flow:established, to_server; content:"username="; nocase;
isdataat:450,relative; content:!"&"; within:450; content:!"|0A|";
within:450;)

We have now verified that:
• The traffic is directed to a server, and the TCP session is established

• The string “username=“ is in the payload

• That there is sufficient space for the attack to be delivered

For this protocol on this server, there are two terminating
characters, “&” and line feed (LF) \x0A. We need to check that
neither occur within the next 450 bytes:
• content:!"&"; within:450;

• content:!"|0A|"; within:450;

If we, from the anchor point (username=), have 450 bytes
available, and we don’t reach any terminating characters, then
we will alert

1212

Bus Stop: dsize

dsize tests the payload size

• format: dsize: [<>] <number> [<><number];

• dsize: 300<>400

You might be tempted to use dsize, rather than
isdataat as a size test for buffer overflows. (Spoiler:
Don’t do this)
• dsize automatically bails on any packet that is part of a

reassembled stream.

• This leads to a false-negative situation for certain buffer
overflow attacks delivered over more than one packet.

• Dsize does not handle relative checks

dsize is designed to test abnormally sized packets,
and isdataat should be used for all other purposes.

1313

Example 2: PCRE buffer overflow
checks

alert tcp $EXTERNAL_NET any -> $HOME_NET
13782 (msg:"EXPLOIT Symantec NetBackup
connect_options buffer overflow attempt";
flow:established,to_server;
content:"CONNECT_OPTIONS="; nocase;
isdataat:900,relative;
pcre:"/CONNECT_OPTIONS\x3D[^\x20\x0A\x0D\x00]{
900}/smi"; reference:bugtraq,21565;
reference:cve,2006-6822; classtype:attempted-admin;
sid:9813; rev:2;)

1414

Example 2: Buffer Overflow Detection (sid: 9813)

(flow:established,to_server; content:"CONNECT_OPTIONS=";
nocase; isdataat:900,relative;
pcre:"/CONNECT_OPTIONS\x3D[^\x20\x0A\x0D\x00]{900}/smi";)

content:”CONNECT_OPTIONS=“; nocase;
• nocase argument indicates that the pattern can be matched in any

combination of either lower or upper case characters.

isdatat:900,relative;
• Again, staring at the DOE, verify that there are 900 bytes available for

detection

• Note, this is not required for PCRE as it is for negative content checks.
• Content:!”A”; within: 40; checks for the absence of an A in 40 bytes, or end of packet.

• pcre:”/[^A]{40}/”; looks for 40 consecutive characters that are not “A”.

• This check provides for speed, in the case where there is not sufficient
payload left for the buffer overflow attack to happen, we bail on this check,
rather than calling PCRE for no reason.

• Always find ways to bail before running a PCRE

Now, about that PCRE (remember, don’t panic…)

1515

Example 2, continued

pcre:"/CONNECT_OPTIONS\x3D[^\x20\x0A\x0D\x00]{900}/smi";)

This is actually a fairly straight forward example of pcre:

The format is pcre:”/REGEX/modifiers”;

The \x statement means you are providing a hexadecimal
number to check
• \x3d is the ascii code for “=“

• \x20 is the ascii code for space

• \x0a is the ascii code for line feed

• \x0d is the ascii code for carriage return

• \x00 is the null byte

The [^\x20\x0A\x0d\x00] is a character class declaration, and the
‘^’ means not. That is, PCRE is instructed to match on
characters that are not in this class.

The {900} means do this match 900 times, so find 900 characters
that are not in the character class.

1616

Example 2, final notes

/smi

• i = case insensitive search

• s = include newlines in the dot (.) metacharacter

• m = metacharacters ^ and $ can match before and after a
newline, as well as the beginning and the end of the buffer

• Check 3.5.13 for more modifiers

PCRE can do some powerful things
• And computationally expensive

• And easy to mess up

• Make sure you run it only when you have to

• Test your pcre (pcretest) and optimize.

• Then do it again.

1717

Example 3: Buffer overflow detection with byte_test

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"RPC
snmpXdmi overflow attempt TCP"; flow:to_server,established;
content:"|00 01 87 99|"; depth:4; offset:16; content:"|00 00 01
01|"; within:4; distance:4; byte_jump:4,4,relative,align;
byte_jump:4,4,relative,align; byte_test:4,>,1024,20,relative;
content:"|00 00 00 00|"; depth:4; offset:8; metadata:policy
balanced-ips drop, policy security-ips drop, service sunrpc;
reference:bugtraq,2417; reference:cve,2001-0236;
reference:nessus,10659;
reference:url,www.cert.org/advisories/CA-2001-05.html;
classtype:attempted-admin; sid:569; rev:18;)

1818

Example 3: Content and the fast pattern matcher

flow:to_server,established; content:"|00 01 87 99|"; depth:4; offset:16;
content:"|00 00 01 01|"; within:4; distance:4; byte_jump:4,4,relative,align;
byte_jump:4,4,relative,align; byte_test:4,>,1024,20,relative; content:"|00
00 00 00|"; depth:4; offset:8;

Three four-byte patterns are in this rule.
• The rule writer chose a specific sequence to speed up detection.

content:"|00 01 87 99|"; depth:4; offset:16;

• Absolute 4 byte match, placed at beginning for more unique
“longest, first match”

content:"|00 00 01 01|"; within:4; distance:4;
• Relative to the previous match. Note that this could also have been depth: 4;

offset: 24; instead.

• Will act as the anchor for our other detection

content:"|00 00 00 00|"; depth:4; offset:8;
• Will be the final validation that our packet is an attack.

1919

Bus Stop: byte_jump

Usage:

• byte_jump: <bytes_to_convert>, <offset> [,relative] [,multiplier <multiplier
value>] [,big] [,little][,string][,hex] [,dec] [,oct] [,align] [,from_beginning];

• Check out 3.5.15 for details.

By way of example:

• Content:”ABC”;

• Places DOE after C

• Byte_Jump: 2, 2, relative;

• Moves the pointer 2 bytes (First black arrow)

• Reads two bytes

• Jumps from the end of the read (Second black arrow)

A B C X X 00 03 X Y Z

After Content relative byte jump Final DOE Location

2020

Example 3: Protocol parsing with byte_jump

byte_jump:4,4,relative,align; byte_jump:4,4,relative,align;

Byte jump is often used to parse length encoded data.

Here we have two dynamically sized data fields we need to jump
over to find the data we need (the same byte_jump structure is
used for both data blocks):

• 4 bytes are read starting 4 bytes from the DOE.

• This protocol requires that data be stored on 4-byte boundaries. The
‘align’ keyword tells snort to round jumps as necessary to handle
this.

• The DOE is then moved the calculated number of bytes

• This process is repeated to jump over the second dynamically sized
data field.

By decoding the protocol we are now 20 bytes from a 4 byte size
field that declares how large the target field is.

2121

Bus Stop: byte_test

Usage:

• byte_test: <bytes to convert>, [!]<operator>, <value>, <offset> [,relative]
[,<endian>] [,<number type>, string];

• Section 3.5.14 details the byte_test option.

By way of example:

• Content:”ABC”;

• Places DOE after C

• Byte_test: 2, <, 4, 2, relative;

• Moves the pointer 2 bytes (First black arrow)

• Reads two bytes

• If the byte read is less than four, then the check is passed.

• Note: The DOE does not move.

A B C X X 00 03 X Y Z

After Content byte_test read

2222

Example 3: Detecting the overflow

byte_test:4,>,1024,20,relative;

Using anchored content matches and a sequence of byte_jumps,
we now know we are 20 bytes from the target size field.

Our research shows that if that field is greater than 1024, then
the provided data will overflow a buffer in memory.

We use the above byte test to make the check:
• Read 4 bytes as a number, starting 20 bytes from the DOE

• If that number is greater than 1024, an attack most likely is underway

2323

Example 4: Kaminsky DNS Bug detection

alert udp $EXTERNAL_NET 53 -> $HOME_NET any
(msg:"DNS large number of NXDOMAIN replies -
possible DNS cache poisoning"; byte_test:1,&,2,3;
byte_test:1,&,1,3; byte_test:1,&,128,2; threshold:type
threshold, track by_src, count 200, seconds 30;
metadata:policy balanced-ips alert, policy security-ips
alert, service dns; reference:cve,2008-1447;
reference:url,www.kb.cert.org/vuls/id/800113;
classtype:misc-attack; sid:13948; rev:2;)

2424

Example 4: Detection notes for the Kaminsky Bug

A fairly in-depth technical review of both the
bug itself and the detection methodology is
available on the vrt white papers page:

• http://www.snort.org/vrt/docs/white_papers/

In short, the detection looks for ‘backscatter’

• Backscatter is the legitimate traffic that is formed in
response to attack traffic

• The attack floods a server with random requests,
and the legitimate servers will send a flood of
NXDOMAIN (i.e. I have no idea what you’re talking
about…) responses.

2525

Example 4: Kaminsky Bug (sid: 13948)

byte_test:1,&,2,3; byte_test:1,&,1,3; byte_test:1,&,128,2;
threshold:type threshold, track by_src, count 200, seconds 30;

byte_test:1,&,2,3;

• byte_test: <bytes to convert>, [!]<operator>, <value>, <offset>
[,relative] [,<endian>] [,<number type>, string];

2626

Byte_test: 1, &, 3, 3;
• On any byte_test, a non-zero response is a success, so all three cases below

will pass the byte test, even though only the case with both flags set is
correct

The proper approach is to check both values:
• byte_test: 1, &, 2, 3;

• byte_test: 1, &, 1, 3;

The final byte_test ensures the packet is a response:
• byte_test:1,&,128,2;

Example 4: Why 3 separate byte_tests?

Both flags set First flag set Second flag set

Packet Value 00000011 00000001 00000010

Byte_test Value 00000011 00000011 00000011

Result 00000011 00000001 00000010

2727

Example 4: Thresholding

threshold:type threshold, track by_src, count 200,
seconds 30;

Thresholding is commonly used while tuning the IDS.

Thresholding is discussed in section 3.8 of the Snort Users
Manual
• First packet starts the window

• Each additional packet checks for expiration and increments the counter

The thresholding is actually a critical part of the detection
methodology:

• The actual attack would generate a huge volume of legitimate
NXDOMAIN responses.

In this case, we are looking for 200 NXDOMAIN responses within
a 30 second window.

2828

Example 4: Thresholding

threshold:type threshold, track by_src, count 200,
seconds 30;

In this case, we are looking for 200 NXDOMAIN responses within
a 30 second window.

The thresholding is actually a critical part of the detection
methodology:

• The actual attack would generate a huge volume of legitimate
NXDOMAIN responses.

Thresholding is discussed in section 3.8 of the Snort Users
Manual
• First packet starts the window

• Each additional packet checks for expiration and increments the counter

2929

Example 5: Let’s mess with Alex

This is Alex!

Alex is one of the rule
writers here in the VRT

Alex spends some of his
free time as a webmaster
for the Mars Society

We love Alex

We love to mess with
people.

3030

Example 5: The goal…

Targeting only Alex’s computer, let’s replace the banner on the

Mars Society website with one of our choosing.

3131

Example 5: In a javascript file…

First we need to figure
out how the image is
being delivered.

So by looking through
some packet captures,
we came across this
gem...

We need to replace:
• http://www.marssociety.org/port

al/logo.jpg

• With a file of our choosing...

#portal-logo {

background:
url(http://www.marssociety.org/
portal/logo.jpg) no-repeat;

border: 0;

margin: 0.75em 0em 0.75em
1.5em;

padding: 0;

}

3232

Example 5: Content/Replace

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $ALEXPC any
(msg:”WE THINK ITS FUNNY”; flow: established, to _client;
content:”http://www.marssociety.org/portal/logo.jpg”;
replace:”http://vrt-app-01/imagemakeevenlongerr.jpg”;
classtype: successful-dos; sid: 100001;)

This rule replaces any instance of the logo.jpg string inbound to
Alex’s box with the link to our file (hosted on a local box).

• Filename was modified to satisfy the equality of length requirement.

• This replace causes Alex’s browser to request the modified banner
and then insert it into the presented webpage.

Notes on the replace keyword:

• Detailed in section 1.5.3 of the Snort Users Manual

• The only thing to remember is the replace content must match the
length of the content it is replacing.

3333

Example 5: Well, we thought it was funny…

Before After

3434

Example 5: Disclaimer

All modifications were done to traffic just
before it reached Alex’s computer

No exploits or attacks were used, only the
functionality of the Snort engine

We had advanced approval

3535

Questions?

If you have questions in general:

• snort-sigs mailing list

• snort-users mailing list

• #snort on freenode irc

• research@sourcefire.com

If you have questions or comments on this
presentation:

• molney@sourcefire.com

3636

Sourcefire Commercial Products

Sourcefire 3D Sensors
• Sourcefire IPS™

• Sourcefire RNA™

• Sourcefire RUA™

• Sourcefire NetFlow Analysis

Sourcefire Defense Center™

Sourcefire Intrusion Agent for Snort

Sourcefire 3D™ System

3737

For More Information…

Sourcefire 3D System

Flash Demo

“Extending Your Investment

in Snort” Technology Brief

Available Now on Sourcefire.com

3838

Questions?

Please submit
questions via

the Q&A
interface in the

lower-right
corner of your

screen.

